Properties

Label 2.113.ay_ln
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 24 x + 299 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0894603824394$, $\pm0.446236920729$
Angle rank:  $2$ (numerical)
Number field:  4.0.1231859088.1
Galois group:  $D_{4}$
Jacobians:  $52$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10333$ $163313065$ $2081329443508$ $26579394854732025$ $339452175252514669573$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12792$ $1442466$ $163016404$ $18424104090$ $2081953611654$ $235260588283482$ $26584442062467556$ $3004041937359245058$ $339456739022723314632$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.1231859088.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.y_ln$2$(not in LMFDB)