Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 299 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0894603824394$, $\pm0.446236920729$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1231859088.1 |
Galois group: | $D_{4}$ |
Jacobians: | $52$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10333$ | $163313065$ | $2081329443508$ | $26579394854732025$ | $339452175252514669573$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12792$ | $1442466$ | $163016404$ | $18424104090$ | $2081953611654$ | $235260588283482$ | $26584442062467556$ | $3004041937359245058$ | $339456739022723314632$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=106 x^6+55 x^5+95 x^4+35 x^3+103 x^2+44 x+9$
- $y^2=47 x^6+26 x^5+2 x^4+111 x^3+94 x^2+102 x+10$
- $y^2=42 x^6+76 x^5+79 x^4+57 x^3+30 x^2+111 x+92$
- $y^2=50 x^6+89 x^5+61 x^4+11 x^3+2 x^2+19 x+29$
- $y^2=50 x^6+53 x^5+59 x^4+102 x^3+99 x^2+34 x+47$
- $y^2=70 x^6+24 x^5+83 x^4+22 x^3+64 x^2+79 x+87$
- $y^2=30 x^6+55 x^5+93 x^4+72 x^3+61 x^2+64 x+10$
- $y^2=72 x^6+33 x^5+4 x^4+69 x^3+102 x^2+34 x+8$
- $y^2=14 x^6+88 x^5+74 x^4+58 x^3+5 x^2+78 x+86$
- $y^2=16 x^6+101 x^5+41 x^4+12 x^3+43 x^2+25 x+111$
- $y^2=99 x^6+54 x^5+97 x^4+67 x^3+81 x^2+6 x+110$
- $y^2=78 x^6+20 x^5+108 x^4+95 x^3+66 x^2+26 x+106$
- $y^2=71 x^6+106 x^5+21 x^4+101 x^3+76 x^2+103 x+19$
- $y^2=67 x^6+48 x^5+44 x^4+8 x^3+99 x^2+81 x+92$
- $y^2=74 x^6+65 x^5+36 x^4+87 x^3+106 x^2+38 x+8$
- $y^2=57 x^6+101 x^5+93 x^4+71 x^3+29 x^2+35 x+5$
- $y^2=38 x^6+69 x^5+82 x^4+78 x^3+54 x^2+15 x+111$
- $y^2=46 x^6+59 x^5+48 x^4+86 x^3+37 x^2+72 x+45$
- $y^2=67 x^6+89 x^5+14 x^4+4 x^3+77 x^2+37 x+81$
- $y^2=40 x^6+37 x^5+88 x^4+108 x^3+80 x^2+32 x+76$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1231859088.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_ln | $2$ | (not in LMFDB) |