Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10326$ |
$163130148$ |
$2080602024102$ |
$26578114434662544$ |
$339450658577638753926$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$90$ |
$12778$ |
$1441962$ |
$163008550$ |
$18424021770$ |
$2081952524554$ |
$235260569632122$ |
$26584441822317310$ |
$3004041935426435802$ |
$339456739010692278538$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
- $y^2=37 x^6+97 x^5+48 x^4+102 x^3+46 x^2+38 x+90$
- $y^2=99 x^6+60 x^5+47 x^4+66 x^3+93 x^2+2 x+91$
- $y^2=6 x^6+78 x^5+12 x^4+105 x^3+52 x^2+17 x+79$
- $y^2=67 x^6+21 x^5+81 x^4+112 x^3+48 x^2+94 x+35$
- $y^2=25 x^6+72 x^5+88 x^4+51 x^3+90 x^2+71 x+9$
- $y^2=108 x^6+22 x^5+112 x^4+53 x^3+91 x^2+42 x+61$
- $y^2=86 x^6+58 x^5+19 x^4+11 x^3+90 x^2+32 x+10$
- $y^2=44 x^6+104 x^5+101 x^4+37 x^3+36 x^2+40 x+6$
- $y^2=75 x^6+84 x^5+104 x^4+x^3+10 x^2+5 x+23$
- $y^2=82 x^6+6 x^5+66 x^4+102 x^3+x^2+110 x+92$
- $y^2=59 x^6+79 x^5+63 x^4+17 x^3+19 x^2+4 x+89$
- $y^2=12 x^6+13 x^5+61 x^4+97 x^3+78 x^2+77 x+104$
- $y^2=12 x^6+60 x^5+50 x^4+27 x^3+28 x+52$
- $y^2=19 x^6+34 x^5+105 x^4+73 x^3+93 x^2+93 x+20$
- $y^2=13 x^6+51 x^5+98 x^4+94 x^3+61 x^2+4 x+11$
- $y^2=54 x^6+14 x^5+98 x^4+75 x^2+88 x+79$
- $y^2=31 x^6+57 x^5+12 x^4+10 x^3+35 x^2+94 x+40$
- $y^2=93 x^6+78 x^5+5 x^4+13 x^3+89 x^2+21 x+30$
- $y^2=17 x^6+95 x^5+96 x^4+50 x^3+4 x^2+27 x+93$
- $y^2=62 x^6+70 x^5+20 x^4+41 x^3+88 x^2+59 x+44$
- and 76 more
- $y^2=93 x^6+57 x^5+87 x^4+27 x^3+29 x^2+44 x+78$
- $y^2=16 x^6+8 x^5+20 x^4+16 x^3+10 x^2+76 x+67$
- $y^2=85 x^6+107 x^5+93 x^4+78 x^3+38 x^2+9 x+36$
- $y^2=58 x^6+35 x^5+32 x^4+66 x^3+84 x^2+72 x+84$
- $y^2=55 x^6+52 x^5+70 x^4+47 x^3+27 x^2+13 x+46$
- $y^2=97 x^6+97 x^5+73 x^4+79 x^3+13 x^2+108 x+85$
- $y^2=105 x^6+107 x^5+30 x^4+35 x^3+56 x^2+88 x+66$
- $y^2=58 x^6+84 x^5+100 x^4+8 x^3+40 x^2+48 x+25$
- $y^2=6 x^6+50 x^5+88 x^4+31 x^3+103 x^2+99 x+20$
- $y^2=10 x^6+18 x^5+81 x^4+27 x^3+90 x^2+86 x+64$
- $y^2=59 x^6+70 x^5+89 x^4+104 x^3+80 x^2+17 x+23$
- $y^2=55 x^6+14 x^5+53 x^4+33 x^3+2 x^2+73 x+96$
- $y^2=79 x^6+86 x^5+37 x^4+45 x^3+83 x^2+32 x+65$
- $y^2=109 x^6+87 x^5+59 x^4+20 x^3+73 x^2+34 x+93$
- $y^2=11 x^6+44 x^5+61 x^4+17 x^3+104 x^2+87 x+107$
- $y^2=67 x^6+67 x^5+64 x^4+29 x^3+84 x^2+83 x+4$
- $y^2=31 x^6+29 x^5+12 x^4+79 x^3+79 x^2+101 x+50$
- $y^2=67 x^6+61 x^5+89 x^4+3 x^3+80 x^2+81 x+82$
- $y^2=35 x^6+74 x^5+57 x^4+92 x^3+10 x^2+10 x+94$
- $y^2=6 x^6+68 x^5+2 x^4+90 x^3+85 x^2+65 x+78$
- $y^2=111 x^6+110 x^5+84 x^4+11 x^3+13 x^2+8 x+46$
- $y^2=111 x^6+40 x^5+67 x^4+25 x^3+44 x^2+29 x+89$
- $y^2=58 x^6+108 x^5+98 x^4+59 x^3+52 x^2+50 x+62$
- $y^2=110 x^6+33 x^5+2 x^4+108 x^3+33 x^2+14 x+110$
- $y^2=30 x^6+19 x^5+28 x^4+80 x^3+106 x^2+85 x+91$
- $y^2=49 x^6+2 x^5+21 x^4+50 x^3+15 x^2+107 x+90$
- $y^2=79 x^6+59 x^5+84 x^4+38 x^3+96 x^2+75 x+27$
- $y^2=81 x^6+79 x^5+111 x^4+49 x^3+78 x^2+67 x+8$
- $y^2=29 x^6+29 x^5+31 x^4+x^3+40 x^2+11 x+65$
- $y^2=27 x^6+101 x^5+52 x^4+104 x^3+48 x^2+74 x+85$
- $y^2=11 x^6+28 x^5+12 x^4+61 x^3+50 x^2+42 x+42$
- $y^2=40 x^6+91 x^5+73 x^4+91 x^3+96 x^2+4 x+55$
- $y^2=15 x^6+48 x^5+3 x^4+10 x^3+112 x^2+75 x+58$
- $y^2=76 x^6+98 x^5+8 x^4+66 x^3+102 x^2+16 x+57$
- $y^2=54 x^6+2 x^5+6 x^3+55 x^2+19 x+26$
- $y^2=22 x^6+112 x^5+86 x^4+54 x^3+30 x^2+85 x+2$
- $y^2=29 x^6+34 x^5+91 x^4+37 x^3+39 x^2+90 x+25$
- $y^2=66 x^6+102 x^5+35 x^4+15 x^3+24 x^2+55 x+62$
- $y^2=23 x^6+14 x^5+112 x^4+58 x^3+27 x^2+83 x+52$
- $y^2=106 x^6+38 x^5+3 x^4+81 x^3+17 x^2+25 x+111$
- $y^2=22 x^6+68 x^5+73 x^4+109 x^3+71 x^2+58 x+86$
- $y^2=28 x^6+103 x^5+51 x^4+67 x^3+2 x^2+20 x+76$
- $y^2=64 x^6+35 x^5+62 x^4+69 x^3+50 x^2+88 x+92$
- $y^2=27 x^6+25 x^5+74 x^4+103 x^3+8 x^2+9 x+17$
- $y^2=107 x^6+49 x^5+100 x^4+72 x^3+61 x^2+95 x+3$
- $y^2=3 x^6+67 x^5+87 x^4+24 x^3+100 x^2+23 x+16$
- $y^2=14 x^6+45 x^5+12 x^4+36 x^3+100 x^2+76 x+2$
- $y^2=17 x^6+107 x^5+57 x^4+67 x^3+2 x^2+94 x+34$
- $y^2=21 x^6+35 x^5+97 x^4+55 x^3+53 x^2+112 x+76$
- $y^2=77 x^6+103 x^5+80 x^4+103 x^3+48 x^2+101 x+65$
- $y^2=102 x^6+98 x^5+90 x^4+107 x^3+100 x^2+59 x+19$
- $y^2=46 x^6+49 x^5+26 x^4+5 x^3+57 x^2+24 x+108$
- $y^2=75 x^6+44 x^5+79 x^4+78 x^2+109 x+109$
- $y^2=103 x^6+65 x^5+3 x^4+96 x^3+27 x^2+50 x+40$
- $y^2=89 x^6+6 x^4+101 x^3+78 x^2+81 x+19$
- $y^2=84 x^6+13 x^5+85 x^3+26 x^2+2 x+75$
- $y^2=55 x^6+19 x^5+93 x^4+30 x^3+76 x^2+90 x+101$
- $y^2=54 x^6+54 x^5+17 x^4+112 x^3+109 x^2+20 x+66$
- $y^2=33 x^6+108 x^5+35 x^4+93 x^3+21 x^2+92 x+37$
- $y^2=73 x^6+75 x^5+16 x^4+12 x^3+11 x^2+46 x+101$
- $y^2=95 x^6+100 x^5+84 x^4+17 x^3+70 x^2+66 x+39$
- $y^2=48 x^6+80 x^5+10 x^4+21 x^3+38 x^2+55 x+65$
- $y^2=40 x^6+71 x^5+59 x^4+110 x^3+57 x^2+92 x+68$
- $y^2=63 x^6+96 x^5+101 x^4+39 x^3+9 x^2+90 x+35$
- $y^2=69 x^6+55 x^5+62 x^4+59 x^3+64 x^2+20 x+15$
- $y^2=68 x^6+87 x^5+79 x^4+50 x^3+46 x^2+104 x+73$
- $y^2=26 x^6+99 x^5+37 x^4+102 x^3+14 x^2+83 x+79$
- $y^2=x^6+62 x^5+59 x^4+31 x^3+76 x^2+80 x+105$
- $y^2=14 x^6+67 x^5+96 x^4+54 x^3+106 x^2+53 x+2$
- $y^2=35 x^6+14 x^5+21 x^4+57 x^3+111 x^2+93 x+92$
- $y^2=74 x^6+109 x^5+19 x^4+92 x^3+23 x^2+8 x+72$
- $y^2=77 x^6+75 x^5+49 x^4+67 x^3+33 x^2+27 x+84$
- $y^2=80 x^6+79 x^5+76 x^4+80 x^3+37 x^2+67 x+1$
- $y^2=26 x^6+13 x^5+3 x^4+24 x^3+19 x^2+75 x+54$
- $y^2=107 x^6+89 x^5+55 x^4+19 x^3+40 x^2+3 x+96$
- $y^2=96 x^6+57 x^5+3 x^4+22 x^3+35 x^2+100 x+70$
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.y_lg | $2$ | (not in LMFDB) |