Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 290 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0549511815408$, $\pm0.454090521595$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.147600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10324$ | $163077904$ | $2080394205844$ | $26577742734360576$ | $339450185445069897364$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12774$ | $1441818$ | $163006270$ | $18423996090$ | $2081952152358$ | $235260563141946$ | $26584441735502974$ | $3004041934586729754$ | $339456739002653210214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=85 x^6+39 x^5+97 x^4+84 x^3+85 x^2+51 x+66$
- $y^2=33 x^6+95 x^5+59 x^4+90 x^3+12 x^2+17$
- $y^2=36 x^6+35 x^5+42 x^4+80 x^3+13 x^2+83 x+37$
- $y^2=29 x^6+79 x^5+11 x^4+77 x^3+70 x^2+15 x+75$
- $y^2=112 x^6+36 x^5+50 x^4+55 x^3+87 x^2+54 x+52$
- $y^2=33 x^6+4 x^5+57 x^4+39 x^3+31 x^2+23 x+28$
- $y^2=65 x^6+68 x^5+25 x^4+90 x^3+78 x^2+9 x+6$
- $y^2=99 x^6+55 x^5+38 x^4+77 x^3+53 x^2+27 x+86$
- $y^2=59 x^6+82 x^5+62 x^4+112 x^3+93 x^2+30 x+100$
- $y^2=95 x^6+91 x^5+61 x^4+71 x^3+57 x^2+37 x+110$
- $y^2=45 x^6+75 x^5+32 x^4+13 x^3+3 x^2+33 x+80$
- $y^2=70 x^6+43 x^5+44 x^4+38 x^3+111 x^2+43 x+33$
- $y^2=19 x^6+33 x^5+82 x^4+98 x^3+20 x^2+40 x+93$
- $y^2=75 x^5+16 x^4+76 x^3+30 x^2+44 x+48$
- $y^2=67 x^6+69 x^5+60 x^4+6 x^3+84 x^2+24 x+40$
- $y^2=39 x^6+18 x^5+75 x^4+16 x^3+31 x^2+43 x+60$
- $y^2=71 x^6+53 x^5+76 x^4+56 x^3+43 x^2+11 x+10$
- $y^2=2 x^6+19 x^5+56 x^4+112 x^3+84 x^2+63 x+90$
- $y^2=112 x^6+46 x^4+77 x^3+41 x^2+10 x+15$
- $y^2=89 x^6+91 x^5+72 x^4+52 x^3+63 x^2+96 x+74$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.147600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_le | $2$ | (not in LMFDB) |