Properties

Label 2.113.ay_kz
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 24 x + 285 x^{2} - 2712 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0197105444322$, $\pm0.458251322724$
Angle rank:  $2$ (numerical)
Number field:  4.0.5556025.1
Galois group:  $D_{4}$
Jacobians:  $20$
Isomorphism classes:  40

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10319$ $162947329$ $2079874690544$ $26576802076930201$ $339448925230580404439$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $12764$ $1441458$ $163000500$ $18423927690$ $2081951101118$ $235260544576266$ $26584441479705124$ $3004041931836722514$ $339456738971660776364$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.5556025.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.y_kz$2$(not in LMFDB)