Properties

Label 2.113.ax_nu
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 113 x^{2} )( 1 - 11 x + 113 x^{2} )$
  $1 - 23 x + 358 x^{2} - 2599 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.309095034261$, $\pm0.326901256467$
Angle rank:  $2$ (numerical)
Jacobians:  $0$
Isomorphism classes:  24

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10506$ $165469500$ $2088796700448$ $26589876407640000$ $339453975693819064746$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $91$ $12957$ $1447636$ $163080689$ $18424201811$ $2081946298194$ $235260502404515$ $26584442016660001$ $3004041944077303108$ $339456739052031153357$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.am $\times$ 1.113.al and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ab_dq$2$(not in LMFDB)
2.113.b_dq$2$(not in LMFDB)
2.113.x_nu$2$(not in LMFDB)