Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 354 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.279810831014$, $\pm0.353577770383$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.28117388.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 36 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10502$ | $165364492$ | $2088397810304$ | $26589424980921344$ | $339454568936505850822$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12949$ | $1447360$ | $163077921$ | $18424234011$ | $2081947536802$ | $235260515223979$ | $26584441970255169$ | $3004041941097320896$ | $339456739017771257109$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=79 x^6+57 x^5+28 x^4+59 x^3+51 x^2+109 x+98$
- $y^2=3 x^6+51 x^5+72 x^4+61 x^3+81 x^2+78 x+94$
- $y^2=96 x^6+97 x^5+69 x^4+106 x^3+80 x^2+104 x+92$
- $y^2=5 x^6+6 x^5+93 x^4+36 x^3+97 x^2+86 x+62$
- $y^2=68 x^6+33 x^5+59 x^4+79 x^3+72 x^2+54 x+103$
- $y^2=3 x^6+96 x^5+56 x^4+93 x^3+63 x^2+70 x+34$
- $y^2=17 x^6+21 x^5+75 x^4+11 x^3+17 x^2+66 x+85$
- $y^2=103 x^6+83 x^5+24 x^4+105 x^3+49 x^2+5 x+94$
- $y^2=90 x^6+49 x^5+20 x^4+49 x^3+55 x^2+73 x+45$
- $y^2=5 x^6+98 x^5+95 x^4+59 x^3+92 x^2+65 x+53$
- $y^2=49 x^6+69 x^5+10 x^4+x^3+44 x^2+30 x+93$
- $y^2=68 x^6+71 x^5+70 x^4+7 x^3+27 x^2+24 x+92$
- $y^2=80 x^6+51 x^5+69 x^4+39 x^3+92 x^2+33 x+69$
- $y^2=19 x^6+34 x^5+13 x^4+49 x^3+50 x^2+27 x+82$
- $y^2=94 x^6+45 x^5+58 x^4+111 x^3+61 x^2+59 x+9$
- $y^2=110 x^6+28 x^5+80 x^4+110 x^3+102 x^2+7 x+11$
- $y^2=13 x^6+13 x^5+111 x^4+5 x^3+56 x^2+64 x+38$
- $y^2=101 x^6+58 x^5+34 x^4+60 x^3+46 x^2+5 x+111$
- $y^2=60 x^6+10 x^5+37 x^4+26 x^3+3 x^2+5 x+38$
- $y^2=61 x^6+42 x^5+28 x^4+7 x^3+41 x^2+26 x+11$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.28117388.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_nq | $2$ | (not in LMFDB) |