Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10478$ |
$164735116$ |
$2086005169664$ |
$26586497576527616$ |
$339456704631971199598$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$91$ |
$12901$ |
$1445704$ |
$163059969$ |
$18424349931$ |
$2081953169506$ |
$235260578183995$ |
$26584441988868993$ |
$3004041933120148648$ |
$339456738920851398021$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 88 curves (of which all are hyperelliptic):
- $y^2=71 x^6+44 x^5+73 x^4+21 x^3+100 x^2+96 x+54$
- $y^2=66 x^6+27 x^5+10 x^4+89 x^3+109 x^2+111 x+29$
- $y^2=6 x^6+28 x^5+65 x^4+47 x^3+45 x^2+50 x+10$
- $y^2=108 x^6+41 x^5+68 x^4+44 x^3+14 x^2+55 x+67$
- $y^2=92 x^6+49 x^5+11 x^4+82 x^3+95 x^2+85 x+98$
- $y^2=20 x^6+67 x^5+109 x^4+76 x^3+94 x^2+44 x+12$
- $y^2=54 x^6+74 x^5+95 x^4+100 x^3+51 x^2+79 x+102$
- $y^2=31 x^6+17 x^5+38 x^4+106 x^3+9 x^2+19 x+27$
- $y^2=111 x^6+97 x^5+34 x^4+101 x^3+45 x^2+105 x+34$
- $y^2=91 x^6+71 x^5+55 x^4+93 x^3+70 x^2+85 x+92$
- $y^2=105 x^6+88 x^5+53 x^4+6 x^3+103 x^2+45 x+64$
- $y^2=90 x^6+59 x^5+109 x^4+32 x^3+23 x^2+102 x+30$
- $y^2=97 x^6+53 x^5+92 x^4+17 x^3+51 x^2+81 x+15$
- $y^2=85 x^6+54 x^5+9 x^4+90 x^3+98 x^2+26 x+34$
- $y^2=5 x^6+10 x^5+98 x^4+38 x^3+84 x^2+72 x+25$
- $y^2=38 x^6+77 x^5+x^4+96 x^3+64 x^2+72 x+43$
- $y^2=8 x^6+92 x^5+36 x^4+82 x^3+71 x^2+78 x+30$
- $y^2=84 x^6+77 x^5+106 x^4+94 x^3+44 x^2+22 x+89$
- $y^2=65 x^6+13 x^5+26 x^4+3 x^3+44 x^2+99 x+58$
- $y^2=79 x^6+63 x^5+100 x^4+64 x^3+57 x^2+89 x+5$
- and 68 more
- $y^2=73 x^6+98 x^5+15 x^4+94 x^3+78 x^2+70 x+77$
- $y^2=45 x^6+69 x^5+6 x^4+14 x^3+16 x^2+24 x+95$
- $y^2=90 x^6+21 x^5+19 x^4+12 x^3+87 x^2+16 x+4$
- $y^2=58 x^6+22 x^5+9 x^4+41 x^3+109 x^2+52 x+69$
- $y^2=86 x^6+10 x^5+21 x^4+54 x^3+50 x^2+34 x+71$
- $y^2=94 x^6+29 x^5+64 x^4+19 x^3+65 x^2+79 x+44$
- $y^2=2 x^6+44 x^5+53 x^4+x^3+107 x^2+107 x+46$
- $y^2=76 x^6+79 x^5+74 x^4+59 x^3+59 x^2+71 x+46$
- $y^2=100 x^6+18 x^5+57 x^4+80 x^3+6 x^2+32 x+42$
- $y^2=16 x^6+19 x^5+13 x^4+67 x^3+8 x^2+52 x+54$
- $y^2=62 x^6+49 x^5+83 x^4+28 x^3+37 x^2+69 x+80$
- $y^2=81 x^6+111 x^4+62 x^3+76 x^2+103 x+90$
- $y^2=29 x^6+9 x^5+48 x^4+65 x^3+51 x^2+47 x+45$
- $y^2=67 x^6+50 x^5+13 x^4+86 x^3+97 x^2+41 x+110$
- $y^2=83 x^6+85 x^5+106 x^4+55 x^3+49 x^2+80 x+34$
- $y^2=36 x^6+112 x^5+73 x^4+56 x^3+8 x^2+13 x+43$
- $y^2=51 x^6+57 x^5+10 x^4+107 x^3+54 x^2+31 x+102$
- $y^2=94 x^6+54 x^5+32 x^4+19 x^3+80 x^2+52 x+56$
- $y^2=24 x^6+81 x^5+5 x^4+37 x^3+51 x^2+81 x+45$
- $y^2=92 x^6+45 x^5+56 x^4+12 x^3+83 x^2+57 x+71$
- $y^2=89 x^6+62 x^5+81 x^4+78 x^3+36 x^2+99 x+56$
- $y^2=45 x^6+110 x^5+75 x^4+19 x^3+22 x^2+4 x+54$
- $y^2=6 x^6+72 x^5+49 x^4+4 x^3+31 x^2+99 x+16$
- $y^2=21 x^6+107 x^5+53 x^4+28 x^3+21 x+38$
- $y^2=38 x^6+90 x^5+36 x^4+53 x^3+36 x^2+21 x+33$
- $y^2=43 x^6+9 x^5+110 x^4+92 x^3+37 x^2+87 x+6$
- $y^2=24 x^6+48 x^5+20 x^4+50 x^3+11 x^2+9 x+6$
- $y^2=67 x^6+94 x^5+84 x^4+103 x^3+52 x^2+22 x+39$
- $y^2=11 x^6+97 x^5+6 x^4+32 x^3+29 x^2+86 x+45$
- $y^2=66 x^6+35 x^5+80 x^4+75 x^3+48 x^2+88 x+79$
- $y^2=104 x^6+27 x^5+72 x^4+48 x^3+61 x^2+63 x+90$
- $y^2=76 x^6+103 x^5+110 x^4+42 x^3+75 x^2+40 x+67$
- $y^2=86 x^6+88 x^5+49 x^4+106 x^3+65 x^2+46 x+24$
- $y^2=76 x^6+16 x^5+108 x^4+45 x^3+69 x^2+27 x+24$
- $y^2=57 x^6+54 x^5+11 x^4+18 x^3+33 x^2+13 x+5$
- $y^2=65 x^6+73 x^5+70 x^4+26 x^3+80 x^2+10 x+45$
- $y^2=98 x^6+51 x^5+50 x^4+72 x^3+110 x^2+111 x+15$
- $y^2=64 x^6+103 x^5+13 x^4+83 x^3+59 x^2+28 x+47$
- $y^2=6 x^6+42 x^5+54 x^4+41 x^3+98 x^2+62 x+79$
- $y^2=35 x^6+41 x^5+96 x^4+96 x^3+56 x^2+29 x+46$
- $y^2=36 x^6+42 x^5+96 x^4+67 x^3+73 x^2+39 x+97$
- $y^2=63 x^6+30 x^5+90 x^4+36 x^3+111 x^2+98 x+10$
- $y^2=7 x^6+30 x^5+79 x^4+106 x^3+103 x^2+108 x+71$
- $y^2=25 x^6+49 x^5+40 x^4+19 x^3+66 x^2+107 x+27$
- $y^2=34 x^6+92 x^5+48 x^4+104 x^3+4 x^2+99 x+17$
- $y^2=40 x^6+67 x^5+83 x^4+6 x^3+108 x^2+75 x+51$
- $y^2=81 x^6+102 x^5+63 x^4+63 x^3+30 x^2+80 x+110$
- $y^2=100 x^6+72 x^5+14 x^4+19 x^3+2 x^2+53 x+96$
- $y^2=27 x^6+40 x^5+5 x^4+14 x^3+108 x^2+71 x+74$
- $y^2=30 x^6+106 x^5+106 x^4+76 x^3+3 x^2+42 x+9$
- $y^2=53 x^6+15 x^5+44 x^4+112 x^3+17 x^2+94 x+20$
- $y^2=13 x^6+102 x^5+74 x^4+50 x^3+86 x^2+43 x+104$
- $y^2=43 x^6+74 x^5+85 x^4+73 x^3+103 x^2+x+40$
- $y^2=40 x^6+47 x^5+107 x^4+36 x^3+54 x^2+52 x+95$
- $y^2=39 x^6+92 x^5+102 x^4+66 x^3+26 x^2+111 x+96$
- $y^2=31 x^6+48 x^5+46 x^4+32 x^3+8 x^2+67 x+12$
- $y^2=34 x^6+34 x^5+30 x^4+81 x^3+51 x^2+8 x+82$
- $y^2=42 x^6+43 x^5+61 x^4+69 x^3+33 x^2+65 x+40$
- $y^2=9 x^6+103 x^5+44 x^4+110 x^3+39 x^2+81 x+60$
- $y^2=23 x^6+83 x^5+43 x^4+4 x^3+23 x^2+9 x+27$
- $y^2=13 x^6+13 x^5+110 x^4+71 x^3+38 x^2+95 x+107$
- $y^2=103 x^6+87 x^5+17 x^4+33 x^3+x^2+3 x+76$
- $y^2=30 x^6+62 x^5+75 x^4+23 x^3+87 x^2+41 x+76$
- $y^2=37 x^6+74 x^5+73 x^4+86 x^3+43 x^2+70 x+52$
- $y^2=11 x^6+51 x^5+11 x^4+30 x^3+22 x^2+22 x+104$
- $y^2=20 x^6+76 x^5+18 x^4+13 x^3+47 x^2+58 x+55$
- $y^2=108 x^6+5 x^5+3 x^4+105 x^3+22 x^2+61 x+102$
- $y^2=51 x^6+69 x^5+82 x^4+42 x^3+30 x^2+10 x+10$
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.x_ms | $2$ | (not in LMFDB) |