Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 325 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.198303859222$, $\pm0.413078296252$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.9428237.2 |
Galois group: | $D_{4}$ |
Jacobians: | $182$ |
Isomorphism classes: | 182 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10473$ | $164604141$ | $2085506849169$ | $26585840473249941$ | $339456842354411144448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12891$ | $1445359$ | $163055939$ | $18424357406$ | $2081953945251$ | $235260587518775$ | $26584442029422883$ | $3004041933090493483$ | $339456738921643943646$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 182 curves (of which all are hyperelliptic):
- $y^2=39 x^6+44 x^5+63 x^4+98 x^3+67 x^2+9 x+27$
- $y^2=21 x^6+44 x^5+80 x^4+52 x^3+110 x^2+49 x+62$
- $y^2=63 x^6+51 x^5+17 x^4+11 x^3+51 x^2+105 x+31$
- $y^2=55 x^6+35 x^5+19 x^4+94 x^3+72 x^2+27 x+85$
- $y^2=94 x^6+78 x^5+27 x^4+65 x^3+41 x^2+55 x+99$
- $y^2=43 x^6+28 x^5+111 x^4+33 x^3+33 x^2+23 x+68$
- $y^2=80 x^6+6 x^5+63 x^4+32 x^3+15 x^2+58 x+9$
- $y^2=36 x^6+62 x^5+90 x^4+86 x^3+25 x^2+71 x+94$
- $y^2=78 x^6+91 x^5+9 x^4+77 x^3+78 x^2+27 x+49$
- $y^2=3 x^6+102 x^5+56 x^4+13 x^3+46 x^2+14 x+102$
- $y^2=109 x^6+45 x^5+13 x^4+30 x^3+100 x^2+108 x+10$
- $y^2=79 x^6+105 x^5+55 x^4+92 x^3+107 x^2+82 x+16$
- $y^2=12 x^6+84 x^5+108 x^4+81 x^3+78 x^2+80 x+104$
- $y^2=74 x^6+50 x^5+54 x^4+81 x^3+60 x+45$
- $y^2=20 x^6+44 x^5+50 x^4+101 x^3+97 x^2+35 x+68$
- $y^2=93 x^6+3 x^5+76 x^4+8 x^3+26 x^2+105 x+33$
- $y^2=3 x^6+48 x^5+40 x^4+87 x^3+56 x^2+102 x+96$
- $y^2=101 x^6+61 x^5+5 x^4+75 x^3+28 x^2+48 x+40$
- $y^2=26 x^6+47 x^5+90 x^4+109 x^3+12 x^2+78 x+70$
- $y^2=65 x^6+17 x^5+66 x^4+109 x^3+51 x^2+24 x+23$
- and 162 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.9428237.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_mn | $2$ | (not in LMFDB) |