Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 314 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.174291261718$, $\pm0.426772364711$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1644521868.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10462$ | $164316172$ | $2084410714624$ | $26584337512478464$ | $339456772444253709022$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12869$ | $1444600$ | $163046721$ | $18424353611$ | $2081955155042$ | $235260602331419$ | $26584442122199809$ | $3004041934200111256$ | $339456738942187382309$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=77 x^6+21 x^5+109 x^4+87 x^3+96 x^2+14 x+21$
- $y^2=106 x^6+91 x^5+33 x^4+20 x^3+26 x^2+63 x+1$
- $y^2=86 x^6+42 x^5+100 x^4+78 x^3+49 x^2+111 x+10$
- $y^2=68 x^6+96 x^5+42 x^4+27 x^3+112 x^2+4 x$
- $y^2=42 x^6+32 x^5+30 x^4+7 x^3+88 x^2+104 x+44$
- $y^2=49 x^6+58 x^5+82 x^4+11 x^3+76 x^2+2 x+49$
- $y^2=68 x^6+51 x^5+56 x^4+3 x^3+76 x^2+90 x+64$
- $y^2=29 x^6+49 x^5+37 x^4+5 x^3+54 x^2+104 x+6$
- $y^2=100 x^6+10 x^5+104 x^4+24 x^3+32 x^2+3 x+39$
- $y^2=19 x^6+59 x^5+21 x^4+90 x^3+x^2+75 x+88$
- $y^2=23 x^6+71 x^5+9 x^4+78 x^3+49 x^2+61 x+102$
- $y^2=64 x^6+106 x^5+101 x^4+96 x^3+60 x^2+70 x+110$
- $y^2=48 x^6+73 x^5+18 x^4+87 x^3+103 x^2+23 x+94$
- $y^2=49 x^6+27 x^5+40 x^4+50 x^3+89 x^2+50 x+49$
- $y^2=83 x^6+48 x^5+33 x^4+22 x^3+69 x^2+86 x+12$
- $y^2=55 x^6+21 x^5+99 x^4+94 x^3+35 x^2+92 x+47$
- $y^2=103 x^6+101 x^5+86 x^4+45 x^3+86 x^2+21 x+40$
- $y^2=71 x^6+67 x^5+11 x^4+67 x^3+45 x^2+x+44$
- $y^2=71 x^6+73 x^5+59 x^4+59 x^3+26 x^2+73 x+86$
- $y^2=27 x^6+48 x^5+26 x^4+52 x^3+55 x^2+22 x+38$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1644521868.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_mc | $2$ | (not in LMFDB) |