Invariants
| Base field: | $\F_{113}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 23 x + 309 x^{2} - 2599 x^{3} + 12769 x^{4}$ | 
| Frobenius angles: | $\pm0.163468248542$, $\pm0.432385521597$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.1828563653.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $64$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $10457$ | $164185357$ | $2083912547489$ | $26583628285635029$ | $339456571166019388672$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $91$ | $12859$ | $1444255$ | $163042371$ | $18424342686$ | $2081955475747$ | $235260606192199$ | $26584442156063139$ | $3004041935030433451$ | $339456738957725786334$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=65 x^6+23 x^5+53 x^4+43 x^3+102 x+65$
- $y^2=95 x^6+16 x^5+101 x^4+70 x^3+14 x^2+37 x+110$
- $y^2=19 x^6+92 x^5+94 x^4+75 x^3+33 x^2+35 x+17$
- $y^2=16 x^6+67 x^5+24 x^4+104 x^3+64 x^2+54 x+37$
- $y^2=29 x^6+37 x^5+27 x^4+49 x^3+51 x^2+36 x+59$
- $y^2=2 x^6+92 x^5+95 x^4+85 x^3+69 x^2+38 x+63$
- $y^2=30 x^6+93 x^5+101 x^4+75 x^3+66 x^2+72 x+72$
- $y^2=44 x^6+69 x^5+71 x^4+101 x^3+30 x^2+38 x+40$
- $y^2=24 x^6+64 x^5+x^4+92 x^3+52 x^2+34 x+55$
- $y^2=33 x^6+6 x^5+43 x^4+50 x^3+67 x^2+110 x+72$
- $y^2=100 x^6+65 x^5+58 x^4+45 x^3+89 x^2+87 x+20$
- $y^2=96 x^6+46 x^5+86 x^4+4 x^3+111 x^2+21 x+62$
- $y^2=54 x^6+4 x^5+61 x^4+66 x^3+39 x^2+62 x+95$
- $y^2=37 x^6+75 x^5+6 x^4+55 x^3+101 x^2+37 x+29$
- $y^2=83 x^6+6 x^5+35 x^4+32 x^3+84 x^2+95 x+10$
- $y^2=101 x^6+40 x^5+41 x^4+50 x^3+87 x^2+82 x+84$
- $y^2=67 x^6+13 x^5+109 x^4+68 x^3+46 x^2+99 x+80$
- $y^2=57 x^6+41 x^5+18 x^4+66 x^3+58 x^2+61 x+93$
- $y^2=63 x^6+50 x^5+79 x^4+94 x^3+63 x^2+107$
- $y^2=73 x^6+25 x^5+5 x^4+23 x^3+11 x^2+18 x+27$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$| The endomorphism algebra of this simple isogeny class is 4.0.1828563653.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.113.x_lx | $2$ | (not in LMFDB) | 
