Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 306 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.156931090073$, $\pm0.435607389426$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1918294796.1 |
Galois group: | $D_{4}$ |
Jacobians: | $50$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10454$ | $164106892$ | $2083613669504$ | $26583194930100224$ | $339456399548528977174$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12853$ | $1444048$ | $163039713$ | $18424333371$ | $2081955598498$ | $235260607573579$ | $26584442171172801$ | $3004041935567668624$ | $339456738968162434293$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=54 x^6+94 x^5+46 x^4+104 x^3+19 x^2+82 x+16$
- $y^2=8 x^6+83 x^5+30 x^4+44 x^3+23 x^2+28 x+102$
- $y^2=84 x^6+31 x^5+43 x^4+16 x^3+57 x^2+112 x+35$
- $y^2=59 x^6+104 x^5+16 x^4+90 x^3+36 x^2+98 x+26$
- $y^2=56 x^6+91 x^5+87 x^4+104 x^3+20 x^2+86 x+34$
- $y^2=59 x^6+39 x^5+106 x^4+35 x^3+37 x^2+32 x+89$
- $y^2=94 x^6+91 x^5+81 x^4+13 x^3+39 x^2+3 x+101$
- $y^2=59 x^6+11 x^5+57 x^4+22 x^3+86 x^2+6 x+86$
- $y^2=37 x^6+102 x^5+15 x^4+105 x^3+105 x^2+112 x+86$
- $y^2=12 x^6+73 x^5+87 x^4+87 x^3+81 x^2+79 x+22$
- $y^2=95 x^6+76 x^5+97 x^4+58 x^3+58 x^2+96 x+106$
- $y^2=93 x^6+34 x^5+42 x^4+70 x^3+21 x^2+12 x+90$
- $y^2=43 x^6+79 x^4+23 x^3+13 x^2+70 x+92$
- $y^2=101 x^6+80 x^5+79 x^4+94 x^3+36 x^2+31 x+97$
- $y^2=97 x^6+24 x^5+92 x^4+18 x^3+55 x^2+4 x+27$
- $y^2=32 x^6+52 x^5+29 x^4+47 x^3+102 x^2+48 x+26$
- $y^2=7 x^6+46 x^5+38 x^4+61 x^3+76 x^2+33 x+22$
- $y^2=54 x^6+27 x^5+87 x^4+85 x^3+65 x^2+12 x+61$
- $y^2=72 x^6+93 x^5+5 x^4+71 x^3+86 x^2+106 x+10$
- $y^2=17 x^6+6 x^5+71 x^4+54 x^3+62 x^2+101 x+45$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1918294796.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_lu | $2$ | (not in LMFDB) |