Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 292 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.125099258501$, $\pm0.449473207172$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.512923400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $180$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10440$ | $163740960$ | $2082219121440$ | $26581095055209600$ | $339455094395974461000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12825$ | $1443082$ | $163026833$ | $18424262531$ | $2081955469950$ | $235260603904067$ | $26584442158504033$ | $3004041937751646826$ | $339456739017587099625$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=108 x^6+69 x^4+54 x^3+5 x^2+71 x+42$
- $y^2=40 x^6+75 x^5+56 x^4+102 x^3+50 x^2+67 x+2$
- $y^2=33 x^6+11 x^5+47 x^4+75 x^3+66 x^2+80 x+57$
- $y^2=94 x^6+77 x^5+53 x^4+11 x^3+76 x^2+38 x+36$
- $y^2=8 x^6+3 x^5+34 x^4+68 x^3+53 x^2+107 x+2$
- $y^2=46 x^6+69 x^5+98 x^4+19 x^3+106 x^2+94 x+48$
- $y^2=75 x^6+10 x^5+9 x^4+33 x^3+43 x^2+48 x+59$
- $y^2=2 x^6+102 x^5+67 x^4+78 x^3+54 x^2+98 x+31$
- $y^2=15 x^6+26 x^5+45 x^4+61 x^3+66 x^2+39 x+30$
- $y^2=9 x^6+80 x^5+41 x^4+104 x^3+94 x+111$
- $y^2=96 x^6+80 x^5+6 x^4+59 x^3+87 x^2+111 x+71$
- $y^2=90 x^6+31 x^5+23 x^4+5 x^3+87 x^2+14 x+35$
- $y^2=5 x^6+74 x^5+76 x^4+89 x^3+60 x^2+93 x+38$
- $y^2=52 x^6+84 x^5+x^3+32 x^2+67 x+106$
- $y^2=34 x^6+2 x^5+63 x^4+5 x^3+40 x^2+84 x+48$
- $y^2=5 x^6+14 x^5+104 x^4+x^3+46 x^2+51 x+85$
- $y^2=45 x^6+50 x^5+78 x^4+19 x^3+66 x^2+67 x+74$
- $y^2=52 x^6+4 x^5+109 x^4+47 x^3+104 x^2+12 x+97$
- $y^2=74 x^6+32 x^5+93 x^4+59 x^3+21 x^2+97 x+73$
- $y^2=91 x^6+111 x^5+7 x^4+46 x^3+13 x^2+61 x+27$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.512923400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_lg | $2$ | (not in LMFDB) |