Invariants
This isogeny class is simple and geometrically simple,
primitive,
not ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10601$ |
$165555817$ |
$2088117472832$ |
$26588439202698569$ |
$339454079594921197801$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$92$ |
$12964$ |
$1447166$ |
$163071876$ |
$18424207452$ |
$2081948399902$ |
$235260529660892$ |
$26584441989332484$ |
$3004041939050589662$ |
$339456738992358766884$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=24 x^6+2 x^5+77 x^4+57 x^3+16 x^2+64 x+61$
- $y^2=22 x^6+63 x^5+104 x^4+57 x^3+x^2+110 x+27$
- $y^2=19 x^6+105 x^5+54 x^4+62 x^3+110 x^2+108 x+73$
- $y^2=90 x^6+58 x^5+98 x^4+58 x^3+86 x^2+17 x+9$
- $y^2=28 x^6+14 x^5+25 x^4+34 x^3+103 x^2+28 x+7$
- $y^2=32 x^6+90 x^5+43 x^4+94 x^3+106 x^2+74 x+88$
- $y^2=74 x^6+3 x^5+103 x^4+29 x^3+78 x^2+104 x+106$
- $y^2=25 x^6+84 x^5+20 x^4+72 x^3+45 x^2+109 x+74$
- $y^2=63 x^6+68 x^5+88 x^4+68 x^3+55 x+23$
- $y^2=37 x^6+91 x^5+111 x^4+55 x^3+18 x+51$
- $y^2=x^6+101 x^5+63 x^4+102 x^3+67 x^2+75 x+75$
- $y^2=66 x^6+51 x^5+56 x^4+29 x^3+88 x^2+49 x+62$
- $y^2=81 x^6+82 x^5+51 x^4+3 x^3+60 x^2+14 x+86$
- $y^2=91 x^6+76 x^5+38 x^4+90 x^3+51 x^2+21 x+2$
- $y^2=13 x^6+73 x^5+57 x^4+52 x^3+70 x^2+47 x+43$
- $y^2=8 x^6+41 x^5+92 x^4+80 x^3+99 x^2+102 x+63$
- $y^2=84 x^6+53 x^5+91 x^4+69 x^3+84 x^2+101 x+67$
- $y^2=8 x^6+19 x^5+70 x^4+15 x^3+23 x^2+39 x+72$
- $y^2=18 x^6+4 x^5+62 x^4+88 x^3+51 x^2+20 x+59$
- $y^2=48 x^6+60 x^5+59 x^4+33 x^3+78 x^2+81 x+47$
- and 64 more
- $y^2=38 x^6+80 x^5+64 x^4+67 x^3+63 x^2+61 x+39$
- $y^2=62 x^6+84 x^5+5 x^4+32 x^3+79 x^2+41 x+33$
- $y^2=109 x^6+99 x^5+75 x^4+28 x^3+13 x^2+4 x+39$
- $y^2=90 x^6+21 x^5+66 x^4+48 x^3+93 x^2+88 x+75$
- $y^2=49 x^6+59 x^5+71 x^4+23 x^3+16 x^2+78 x+68$
- $y^2=88 x^6+110 x^5+103 x^4+36 x^3+69 x^2+33 x+37$
- $y^2=84 x^6+36 x^5+52 x^4+2 x^3+38 x^2+12 x+38$
- $y^2=42 x^6+77 x^5+12 x^4+68 x^3+46 x^2+84 x+74$
- $y^2=27 x^6+51 x^5+98 x^4+58 x^3+92 x^2+3 x+11$
- $y^2=12 x^6+64 x^5+29 x^4+83 x^3+43 x^2+34 x+24$
- $y^2=34 x^6+106 x^5+92 x^4+44 x^3+112 x^2+83 x+59$
- $y^2=102 x^6+95 x^5+46 x^4+23 x^3+63 x^2+10 x+34$
- $y^2=66 x^6+94 x^5+69 x^4+32 x^3+74 x^2+36 x+73$
- $y^2=39 x^6+23 x^5+101 x^4+105 x^3+80 x^2+27 x+38$
- $y^2=90 x^6+23 x^5+8 x^4+32 x^3+37 x^2+19 x+40$
- $y^2=65 x^6+76 x^5+25 x^4+54 x^3+73 x^2+66 x+53$
- $y^2=102 x^6+62 x^5+61 x^4+4 x^3+19 x^2+102 x+66$
- $y^2=79 x^6+107 x^5+100 x^4+13 x^3+26 x^2+13 x+27$
- $y^2=98 x^6+49 x^5+46 x^4+30 x^3+28 x^2+69 x+84$
- $y^2=97 x^6+92 x^5+44 x^4+90 x^3+23 x^2+92 x+75$
- $y^2=24 x^6+24 x^5+29 x^4+21 x^3+71 x^2+104 x+70$
- $y^2=88 x^6+27 x^5+98 x^3+65 x^2+40 x+10$
- $y^2=43 x^6+79 x^5+7 x^4+46 x^3+76 x^2+46 x+92$
- $y^2=82 x^6+31 x^5+96 x^4+101 x^3+88 x^2+38 x+11$
- $y^2=24 x^6+16 x^5+41 x^4+91 x^3+49 x^2+72$
- $y^2=51 x^6+112 x^5+20 x^4+86 x^3+50 x^2+2 x+83$
- $y^2=99 x^6+62 x^5+58 x^4+46 x^3+35 x^2+51 x+109$
- $y^2=17 x^6+12 x^4+73 x^3+47 x^2+46 x+67$
- $y^2=21 x^6+55 x^5+94 x^4+99 x^3+16 x^2+60 x+10$
- $y^2=19 x^6+39 x^5+95 x^4+53 x^3+14 x^2+46 x+31$
- $y^2=31 x^6+108 x^5+82 x^4+10 x^3+x^2+18 x+55$
- $y^2=64 x^6+62 x^5+11 x^4+58 x^3+48 x^2+79 x+57$
- $y^2=21 x^6+45 x^5+109 x^4+73 x^3+84 x^2+93 x+66$
- $y^2=58 x^6+91 x^5+87 x^4+83 x^3+9 x^2+65 x+80$
- $y^2=99 x^6+103 x^5+45 x^4+18 x^3+45 x^2+42 x+34$
- $y^2=15 x^6+82 x^5+103 x^4+106 x^3+96 x^2+70 x+34$
- $y^2=10 x^6+80 x^5+44 x^4+14 x^3+83 x^2+74 x+18$
- $y^2=108 x^6+5 x^5+112 x^4+91 x^3+82 x^2+47 x+22$
- $y^2=29 x^6+85 x^5+57 x^4+8 x^3+3 x^2+5 x+110$
- $y^2=6 x^6+84 x^5+75 x^4+51 x^3+13 x^2+105 x+60$
- $y^2=72 x^6+47 x^5+61 x^4+78 x^3+48 x^2+60 x+37$
- $y^2=76 x^6+81 x^5+53 x^4+14 x^3+92 x^2+71 x+45$
- $y^2=32 x^6+52 x^5+82 x^4+12 x^3+71 x^2+29 x+101$
- $y^2=18 x^6+50 x^5+96 x^4+50 x^3+27 x^2+58 x+65$
- $y^2=24 x^6+84 x^5+82 x^4+61 x^3+49 x^2+77 x+55$
- $y^2=94 x^6+42 x^5+86 x^4+6 x^3+97 x^2+43 x+81$
- $y^2=34 x^6+21 x^5+81 x^4+51 x^3+106 x^2+59 x+47$
- $y^2=103 x^6+92 x^5+106 x^4+112 x^3+6 x^2+106 x+33$
- $y^2=16 x^6+25 x^5+58 x^4+92 x^3+95 x^2+65 x+112$
- $y^2=46 x^6+97 x^5+90 x^4+6 x^3+64 x^2+80 x+10$
- $y^2=55 x^6+5 x^5+44 x^4+88 x^3+49 x^2+55 x+108$
- $y^2=85 x^6+56 x^5+79 x^4+10 x^3+66 x^2+25 x+36$
- $y^2=92 x^6+101 x^5+27 x^4+109 x^3+12 x^2+4 x+76$
- $y^2=65 x^6+13 x^5+96 x^4+99 x^3+103 x^2+57 x+47$
- $y^2=36 x^6+17 x^5+111 x^4+101 x^3+35 x^2+99 x+5$
- $y^2=29 x^6+71 x^5+66 x^4+8 x^3+19 x^2+64 x+83$
- $y^2=4 x^6+112 x^5+41 x^4+36 x^3+26 x^2+91 x+26$
- $y^2=14 x^6+112 x^5+24 x^3+65 x^2+102 x+59$
- $y^2=72 x^6+106 x^5+38 x^4+48 x^3+13 x^2+55 x+66$
- $y^2=89 x^6+76 x^5+54 x^4+41 x^3+8 x^2+25 x+27$
- $y^2=84 x^6+78 x^5+56 x^4+35 x^3+45 x^2+3 x+78$
- $y^2=43 x^6+23 x^5+38 x^4+7 x^3+11 x^2+39 x+24$
- $y^2=58 x^6+78 x^5+98 x^4+84 x^3+92 x^2+40 x+92$
- $y^2=110 x^6+51 x^5+64 x^4+75 x^3+28 x^2+24 x+45$
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.6429248.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.w_nb | $2$ | (not in LMFDB) |