Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 113 x^{2} )( 1 - 8 x + 113 x^{2} )$ |
$1 - 22 x + 338 x^{2} - 2486 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.271189304635$, $\pm0.377200205714$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $156$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10600$ | $165529600$ | $2088022100200$ | $26588344287232000$ | $339454241725399393000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12962$ | $1447100$ | $163071294$ | $18424216252$ | $2081948676194$ | $235260532016476$ | $26584441973724286$ | $3004041938467132700$ | $339456738987186562082$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=106 x^6+110 x^5+91 x^4+5 x^3+51 x^2+110 x+66$
- $y^2=20 x^6+112 x^5+27 x^4+94 x^3+27 x^2+112 x+20$
- $y^2=47 x^6+16 x^5+42 x^4+90 x^3+48 x^2+105 x+12$
- $y^2=78 x^6+9 x^5+58 x^4+89 x^3+80 x^2+39 x+43$
- $y^2=42 x^6+111 x^5+22 x^4+43 x^3+36 x^2+7 x+3$
- $y^2=73 x^6+72 x^5+9 x^4+66 x^3+5 x^2+61 x+18$
- $y^2=75 x^6+69 x^5+49 x^4+33 x^3+53 x^2+86 x$
- $y^2=76 x^6+100 x^5+19 x^4+3 x^3+101 x^2+61 x+47$
- $y^2=97 x^6+69 x^5+60 x^4+95 x^3+37 x^2+91 x+51$
- $y^2=16 x^6+93 x^5+65 x^4+84 x^3+65 x^2+62 x+58$
- $y^2=86 x^6+76 x^5+70 x^4+8 x^3+42 x^2+72 x+89$
- $y^2=101 x^6+24 x^5+37 x^4+86 x^3+53 x^2+110 x+112$
- $y^2=46 x^6+5 x^5+111 x^4+23 x^3+111 x^2+5 x+46$
- $y^2=67 x^6+33 x^5+36 x^4+12 x^3+63 x^2+42 x+68$
- $y^2=81 x^6+55 x^5+52 x^4+46 x^3+44 x^2+26 x+68$
- $y^2=35 x^6+19 x^5+90 x^4+56 x^3+98 x^2+36 x+33$
- $y^2=101 x^6+18 x^5+103 x^4+48 x^3+80 x^2+25 x+37$
- $y^2=68 x^6+46 x^5+30 x^4+53 x^3+59 x^2+73 x+58$
- $y^2=81 x^6+20 x^5+25 x^4+17 x^3+64 x+73$
- $y^2=59 x^6+87 x^5+62 x^4+84 x^3+33 x^2+70 x+101$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.ao $\times$ 1.113.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.