Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 335 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.261834682104$, $\pm0.384665101061$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.13817232.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10597$ | $165450961$ | $2087735994448$ | $26588055632650681$ | $339454703797941461917$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12956$ | $1446902$ | $163069524$ | $18424241332$ | $2081949477086$ | $235260538955716$ | $26584441933809508$ | $3004041936887048150$ | $339456738972954493196$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=61 x^6+39 x^5+101 x^4+72 x^3+14 x^2+18 x+105$
- $y^2=74 x^6+35 x^5+5 x^4+59 x^3+84 x^2+59 x+2$
- $y^2=35 x^6+66 x^5+3 x^4+55 x^3+111 x^2+107 x+78$
- $y^2=71 x^6+100 x^5+103 x^4+9 x^3+32 x^2+2 x+17$
- $y^2=56 x^6+73 x^5+87 x^4+6 x^3+27 x^2+5 x+58$
- $y^2=10 x^6+2 x^5+87 x^4+53 x^3+105 x^2+105 x+52$
- $y^2=76 x^6+111 x^5+101 x^4+38 x^3+110 x^2+51 x+10$
- $y^2=x^6+67 x^5+81 x^4+102 x^3+2 x^2+53 x+58$
- $y^2=29 x^6+61 x^5+18 x^4+49 x^3+43 x^2+14 x+31$
- $y^2=4 x^6+22 x^5+97 x^4+93 x^3+71 x^2+87 x+18$
- $y^2=5 x^6+58 x^5+7 x^4+2 x^3+106 x^2+104 x+73$
- $y^2=94 x^6+6 x^5+77 x^4+36 x^3+72 x^2+18 x+5$
- $y^2=57 x^6+81 x^5+110 x^4+90 x^3+86 x^2+14 x+78$
- $y^2=87 x^6+66 x^5+29 x^4+53 x^3+108 x^2+71 x+63$
- $y^2=99 x^6+81 x^5+26 x^4+105 x^3+106 x^2+64 x+21$
- $y^2=89 x^6+59 x^5+45 x^4+x^3+82 x^2+65 x+80$
- $y^2=2 x^6+71 x^5+74 x^4+35 x^3+109 x^2+28 x+48$
- $y^2=43 x^6+8 x^5+79 x^4+76 x^3+107 x^2+35 x+29$
- $y^2=108 x^6+73 x^5+106 x^4+23 x^3+20 x^2+5 x+70$
- $y^2=4 x^6+77 x^5+41 x^4+54 x^3+103 x^2+33 x+23$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.13817232.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_mx | $2$ | (not in LMFDB) |