Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 328 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.243028913751$, $\pm0.398876759465$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.509142848.1 |
Galois group: | $D_{4}$ |
Jacobians: | $174$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10590$ | $165267540$ | $2087068484430$ | $26587359306536400$ | $339455640106395505950$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12942$ | $1446440$ | $163065254$ | $18424292152$ | $2081951181054$ | $235260554284876$ | $26584441877083006$ | $3004041934134620780$ | $339456738947390924382$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 174 curves (of which all are hyperelliptic):
- $y^2=112 x^6+43 x^5+109 x^4+36 x^3+23 x^2+41 x+33$
- $y^2=23 x^6+28 x^5+43 x^4+43 x^3+112 x^2+98 x+21$
- $y^2=86 x^6+12 x^5+82 x^4+81 x^3+2 x^2+109 x+61$
- $y^2=67 x^6+92 x^5+55 x^4+16 x^3+7 x^2+94 x+92$
- $y^2=81 x^6+65 x^5+45 x^4+53 x^3+59 x+29$
- $y^2=62 x^6+109 x^5+58 x^4+60 x^3+13 x^2+37 x+98$
- $y^2=83 x^6+3 x^5+11 x^4+91 x^3+85 x^2+46 x+10$
- $y^2=11 x^6+84 x^5+84 x^4+65 x^3+69 x^2+95 x+65$
- $y^2=86 x^6+15 x^5+3 x^4+10 x^3+6 x^2+25 x+30$
- $y^2=x^6+72 x^5+111 x^4+75 x^3+84 x^2+32 x+90$
- $y^2=70 x^6+72 x^5+77 x^4+70 x^3+7 x^2+35 x+14$
- $y^2=101 x^6+58 x^5+73 x^4+89 x^3+26 x^2+2 x+19$
- $y^2=59 x^6+37 x^5+75 x^4+104 x^3+25 x^2+66 x+67$
- $y^2=12 x^6+99 x^5+69 x^4+109 x^3+90 x^2+40 x+4$
- $y^2=41 x^6+80 x^5+83 x^4+99 x^3+68 x^2+82 x+96$
- $y^2=25 x^6+87 x^5+86 x^4+95 x^3+27 x^2+52 x+24$
- $y^2=110 x^6+58 x^5+67 x^4+30 x^3+29 x^2+65 x+40$
- $y^2=3 x^6+90 x^5+39 x^4+43 x^3+101 x^2+102 x+6$
- $y^2=88 x^6+3 x^5+62 x^4+21 x^3+21 x^2+20 x$
- $y^2=95 x^6+90 x^5+33 x^4+27 x^3+103 x^2+103 x+85$
- and 154 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.509142848.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_mq | $2$ | (not in LMFDB) |