Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 321 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.226550153570$, $\pm0.410474674324$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.870049856.1 |
Galois group: | $D_{4}$ |
Jacobians: | $76$ |
Isomorphism classes: | 152 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10583$ | $165084217$ | $2086401070844$ | $26586631059958649$ | $339456377808456483223$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12928$ | $1445978$ | $163060788$ | $18424332192$ | $2081952650998$ | $235260568150112$ | $26584441862831076$ | $3004041932557027994$ | $339456738932594145168$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 76 curves (of which all are hyperelliptic):
- $y^2=50 x^6+105 x^5+110 x^4+15 x^3+103 x^2+84 x+3$
- $y^2=32 x^6+24 x^5+64 x^4+95 x^3+58 x^2+87 x+19$
- $y^2=70 x^6+5 x^5+75 x^4+104 x^3+43 x^2+51 x+13$
- $y^2=74 x^6+111 x^5+63 x^4+51 x^3+20 x^2+36 x+62$
- $y^2=77 x^6+29 x^5+23 x^4+81 x^3+17 x^2+93 x+79$
- $y^2=16 x^6+47 x^5+93 x^4+9 x^3+30 x^2+40 x+81$
- $y^2=47 x^6+5 x^5+5 x^4+107 x^3+13 x^2+20 x+23$
- $y^2=40 x^6+68 x^5+45 x^4+26 x^3+38 x^2+11 x+43$
- $y^2=70 x^6+60 x^5+62 x^4+9 x^3+79 x^2+91 x+39$
- $y^2=x^6+59 x^5+68 x^4+30 x^3+80 x^2+96 x+76$
- $y^2=79 x^6+109 x^5+81 x^4+85 x^3+73 x^2+43 x+1$
- $y^2=45 x^6+35 x^5+17 x^4+6 x^3+55 x^2+2 x+19$
- $y^2=23 x^6+83 x^5+52 x^4+79 x^3+54 x^2+45 x+61$
- $y^2=53 x^6+106 x^5+37 x^4+24 x^3+49 x^2+103 x+67$
- $y^2=6 x^6+3 x^5+73 x^4+33 x^3+111 x^2+99 x+106$
- $y^2=79 x^6+5 x^5+61 x^4+93 x^3+68 x^2+112 x+69$
- $y^2=6 x^6+16 x^5+68 x^4+47 x^3+5 x^2+36 x+57$
- $y^2=37 x^6+94 x^5+111 x^4+93 x^3+83 x^2+56 x+49$
- $y^2=12 x^6+47 x^5+63 x^4+81 x^3+20 x^2+36 x+83$
- $y^2=50 x^6+4 x^5+14 x^4+65 x^3+94 x^2+35 x+22$
- and 56 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.870049856.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_mj | $2$ | (not in LMFDB) |