Properties

Label 2.113.aw_mi
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 22 x + 320 x^{2} - 2486 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.224314450426$, $\pm0.411987396568$
Angle rank:  $2$ (numerical)
Number field:  4.0.11426112.1
Galois group:  $D_{4}$
Jacobians:  $208$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10582$ $165058036$ $2086305733798$ $26586524418824656$ $339456466981611349942$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $92$ $12926$ $1445912$ $163060134$ $18424337032$ $2081952841646$ $235260569992876$ $26584441863646078$ $3004041932417527820$ $339456738931344834446$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 208 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.11426112.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.w_mi$2$(not in LMFDB)