Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 320 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.224314450426$, $\pm0.411987396568$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.11426112.1 |
Galois group: | $D_{4}$ |
Jacobians: | $208$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10582$ | $165058036$ | $2086305733798$ | $26586524418824656$ | $339456466981611349942$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12926$ | $1445912$ | $163060134$ | $18424337032$ | $2081952841646$ | $235260569992876$ | $26584441863646078$ | $3004041932417527820$ | $339456738931344834446$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 208 curves (of which all are hyperelliptic):
- $y^2=34 x^6+80 x^5+41 x^4+39 x^3+73 x^2+84 x+27$
- $y^2=97 x^6+35 x^5+36 x^4+99 x^3+12 x^2+39 x+68$
- $y^2=103 x^6+112 x^5+3 x^4+98 x^2+31 x+7$
- $y^2=22 x^6+39 x^5+22 x^4+98 x^3+71 x^2+56 x+101$
- $y^2=61 x^6+101 x^5+26 x^4+60 x^3+86 x^2+74 x+43$
- $y^2=65 x^6+40 x^5+104 x^4+25 x^3+23 x^2+35 x+46$
- $y^2=95 x^6+14 x^5+61 x^4+14 x^3+109 x^2+56 x+8$
- $y^2=110 x^6+86 x^5+88 x^4+59 x^3+7 x^2+52 x+104$
- $y^2=65 x^6+15 x^5+89 x^4+110 x^3+58 x^2+105 x+94$
- $y^2=10 x^6+13 x^5+91 x^4+x^3+40 x^2+33 x+89$
- $y^2=19 x^6+49 x^5+24 x^4+58 x^3+87 x^2+108 x+75$
- $y^2=108 x^6+53 x^5+95 x^4+5 x^3+79 x^2+70 x+19$
- $y^2=74 x^6+16 x^5+19 x^4+29 x^3+76 x^2+29 x+7$
- $y^2=71 x^6+35 x^5+81 x^4+103 x^3+60 x^2+22 x+41$
- $y^2=26 x^6+86 x^5+33 x^4+52 x^3+17 x^2+110 x+43$
- $y^2=70 x^6+102 x^5+27 x^4+37 x^3+17 x^2+69 x+104$
- $y^2=57 x^6+99 x^5+66 x^4+112 x^3+39 x^2+64 x+96$
- $y^2=35 x^6+92 x^5+33 x^4+81 x^3+37 x^2+37 x+12$
- $y^2=111 x^6+23 x^5+95 x^4+73 x^3+33 x^2+41 x+46$
- $y^2=38 x^6+40 x^5+38 x^4+3 x^3+75 x^2+97 x+9$
- and 188 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.11426112.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_mi | $2$ | (not in LMFDB) |