Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 317 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.217737983369$, $\pm0.416353427659$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1095566400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $124$ |
Isomorphism classes: | 248 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10579$ | $164979505$ | $2086019734156$ | $26586200586390025$ | $339456710181703265419$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12920$ | $1445714$ | $163058148$ | $18424350232$ | $2081953384310$ | $235260575293864$ | $26584441869684868$ | $3004041932116324082$ | $339456738928856780600$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=2 x^6+46 x^5+30 x^4+67 x^3+75 x^2+44 x+9$
- $y^2=56 x^6+64 x^5+76 x^4+64 x^3+110 x^2+73 x+18$
- $y^2=108 x^6+50 x^5+77 x^4+8 x^3+92 x^2+29 x+30$
- $y^2=110 x^6+67 x^5+108 x^4+85 x^3+37 x^2+98 x+58$
- $y^2=96 x^6+54 x^5+105 x^4+105 x^3+88 x^2+3 x+96$
- $y^2=12 x^6+67 x^5+11 x^4+17 x^3+107 x^2+96 x+103$
- $y^2=34 x^6+71 x^5+51 x^4+12 x^3+2 x^2+29 x+82$
- $y^2=34 x^6+86 x^5+7 x^4+75 x^3+112 x^2+10 x+77$
- $y^2=24 x^6+106 x^5+78 x^4+104 x^3+111 x^2+20 x+15$
- $y^2=9 x^6+39 x^5+53 x^4+29 x^3+53 x^2+89 x+93$
- $y^2=70 x^6+102 x^5+20 x^4+18 x^3+69 x^2+70 x+48$
- $y^2=34 x^6+87 x^5+48 x^4+18 x^3+30 x^2+86 x+1$
- $y^2=48 x^6+64 x^5+54 x^4+17 x^3+4 x^2+31 x+108$
- $y^2=103 x^6+26 x^5+98 x^4+18 x^3+39 x^2+4 x+69$
- $y^2=7 x^6+77 x^5+8 x^4+88 x^3+78 x^2+35 x+23$
- $y^2=65 x^6+62 x^5+104 x^4+111 x^3+78 x^2+96 x+46$
- $y^2=112 x^6+105 x^5+30 x^4+103 x^3+82 x^2+95 x+78$
- $y^2=89 x^6+76 x^5+92 x^4+55 x^3+56 x^2+88 x+66$
- $y^2=12 x^6+75 x^5+6 x^4+100 x^3+108 x^2+100 x+16$
- $y^2=3 x^6+78 x^5+10 x^4+85 x^3+81 x^2+36 x+25$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1095566400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_mf | $2$ | (not in LMFDB) |