Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 258 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0890366688157$, $\pm0.476532252388$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.30670112.1 |
Galois group: | $D_{4}$ |
Jacobians: | $168$ |
Isomorphism classes: | 288 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10520$ | $163438720$ | $2080398348440$ | $26578639998156800$ | $339454079625835048600$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12802$ | $1441820$ | $163011774$ | $18424207452$ | $2081954670274$ | $235260574766876$ | $26584441859781246$ | $3004041938662165340$ | $339456739054186468482$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=21 x^6+19 x^5+x^4+9 x^3+31 x^2+63 x+16$
- $y^2=45 x^6+71 x^5+57 x^4+27 x^3+73 x^2+86 x+28$
- $y^2=82 x^6+82 x^5+50 x^4+4 x^3+103 x^2+68 x+69$
- $y^2=13 x^6+100 x^5+107 x^4+6 x^3+23 x^2+89 x+77$
- $y^2=29 x^6+26 x^5+111 x^4+23 x^3+2 x^2+45 x+104$
- $y^2=6 x^6+92 x^5+50 x^4+99 x^3+76 x^2+67 x+90$
- $y^2=86 x^6+77 x^5+57 x^4+8 x^3+2 x^2+17 x+72$
- $y^2=103 x^6+81 x^5+95 x^4+80 x^3+101 x^2+102 x+53$
- $y^2=27 x^6+2 x^5+13 x^4+67 x^3+86 x^2+89 x+79$
- $y^2=45 x^6+107 x^5+5 x^4+19 x^3+57 x^2+72 x+53$
- $y^2=84 x^6+15 x^5+61 x^4+32 x^3+10 x^2+15 x+88$
- $y^2=40 x^6+57 x^5+54 x^4+19 x^3+79 x^2+37 x+50$
- $y^2=78 x^6+104 x^5+21 x^4+24 x^3+53 x^2+96 x+73$
- $y^2=49 x^6+31 x^5+77 x^4+8 x^3+43 x^2+35 x+70$
- $y^2=45 x^6+49 x^5+64 x^4+78 x^3+78 x^2+99 x+94$
- $y^2=x^6+43 x^5+111 x^4+51 x^3+53 x^2+63 x+90$
- $y^2=80 x^6+65 x^5+67 x^4+50 x^3+65 x^2+13 x+106$
- $y^2=42 x^6+57 x^5+62 x^4+101 x^3+46 x^2+69 x+14$
- $y^2=3 x^6+32 x^5+76 x^4+84 x^3+23 x^2+31 x+89$
- $y^2=101 x^6+30 x^5+79 x^4+96 x^3+112 x^2+11 x+81$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.30670112.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_jy | $2$ | (not in LMFDB) |