Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 255 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0800419765960$, $\pm0.478898874668$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2175248.1 |
Galois group: | $D_{4}$ |
Jacobians: | $126$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10517$ | $163360561$ | $2080112669648$ | $26578194943308281$ | $339453568905648628717$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12796$ | $1441622$ | $163009044$ | $18424179732$ | $2081954234206$ | $235260567550436$ | $26584441786917348$ | $3004041938249409590$ | $339456739051106369196$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=6 x^6+79 x^5+107 x^4+112 x^3+98 x^2+30 x+38$
- $y^2=101 x^6+78 x^5+14 x^4+28 x^3+80 x^2+29 x+19$
- $y^2=99 x^6+95 x^5+2 x^4+94 x^3+12 x^2+4 x+76$
- $y^2=98 x^6+49 x^5+87 x^4+90 x^3+85 x^2+46 x+67$
- $y^2=93 x^6+4 x^5+46 x^4+112 x^3+5 x^2+28 x+28$
- $y^2=48 x^6+20 x^5+48 x^4+46 x^3+44 x^2+79 x+92$
- $y^2=70 x^6+73 x^5+47 x^4+94 x^3+95 x^2+34 x+1$
- $y^2=45 x^6+38 x^5+77 x^4+17 x^3+14 x^2+35 x+86$
- $y^2=27 x^6+104 x^5+66 x^3+69 x^2+91 x+72$
- $y^2=39 x^6+22 x^5+77 x^4+26 x^3+15 x^2+95 x+94$
- $y^2=46 x^6+31 x^5+7 x^4+70 x^3+36 x^2+105 x+65$
- $y^2=12 x^6+59 x^5+84 x^4+81 x^3+6 x^2+104 x+82$
- $y^2=103 x^6+17 x^5+20 x^4+62 x^3+44 x^2+106 x+5$
- $y^2=54 x^6+60 x^5+83 x^4+48 x^2+72 x+40$
- $y^2=41 x^6+48 x^5+37 x^4+108 x^3+107 x^2+59 x+84$
- $y^2=32 x^6+75 x^5+80 x^4+19 x^3+102 x^2+2 x+14$
- $y^2=56 x^6+36 x^5+107 x^4+105 x^3+86 x^2+31 x+95$
- $y^2=50 x^6+77 x^5+94 x^4+45 x^3+38 x^2+73 x+46$
- $y^2=19 x^6+21 x^5+92 x^4+91 x^3+34 x^2+95 x+105$
- $y^2=46 x^6+78 x^5+20 x^4+65 x^3+79 x^2+26 x+62$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.2175248.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_jv | $2$ | (not in LMFDB) |