Properties

Label 2.113.aw_jv
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 22 x + 255 x^{2} - 2486 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0800419765960$, $\pm0.478898874668$
Angle rank:  $2$ (numerical)
Number field:  4.0.2175248.1
Galois group:  $D_{4}$
Jacobians:  $126$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10517$ $163360561$ $2080112669648$ $26578194943308281$ $339453568905648628717$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $92$ $12796$ $1441622$ $163009044$ $18424179732$ $2081954234206$ $235260567550436$ $26584441786917348$ $3004041938249409590$ $339456739051106369196$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.2175248.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.w_jv$2$(not in LMFDB)