Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 253 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0735436140508$, $\pm0.480454596499$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1508906048.1 |
Galois group: | $D_{4}$ |
Jacobians: | $62$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10515$ | $163308465$ | $2079922224780$ | $26577894980342025$ | $339453208158436368075$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12792$ | $1441490$ | $163007204$ | $18424160152$ | $2081953915254$ | $235260562254376$ | $26584441730881156$ | $3004041937852630130$ | $339456739047176776632$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=29 x^6+28 x^5+111 x^4+71 x^3+75 x^2+45 x+40$
- $y^2=98 x^6+21 x^5+25 x^4+112 x^3+10 x^2+33 x+108$
- $y^2=43 x^6+11 x^5+71 x^4+18 x^3+87 x^2+100 x+101$
- $y^2=102 x^6+15 x^5+13 x^4+81 x^3+38 x^2+65 x+48$
- $y^2=24 x^6+36 x^5+4 x^4+99 x^3+68 x^2+59 x+64$
- $y^2=71 x^6+54 x^5+3 x^4+92 x^2+40 x+70$
- $y^2=6 x^6+49 x^5+60 x^4+98 x^3+24 x^2+65$
- $y^2=107 x^6+47 x^5+10 x^4+35 x^3+104 x^2+102 x+56$
- $y^2=82 x^6+105 x^5+90 x^4+38 x^3+81 x^2+15 x+39$
- $y^2=60 x^6+72 x^5+6 x^4+91 x^3+34 x^2+3 x+35$
- $y^2=54 x^6+26 x^5+112 x^4+77 x^3+64 x^2+48 x+88$
- $y^2=21 x^6+112 x^5+79 x^4+4 x^3+30 x^2+52 x+99$
- $y^2=107 x^6+101 x^5+51 x^4+96 x^3+15 x^2+106 x+3$
- $y^2=95 x^6+62 x^5+52 x^4+47 x^3+80 x^2+67 x+2$
- $y^2=99 x^6+74 x^5+39 x^4+84 x^3+73 x^2+34 x+28$
- $y^2=77 x^6+18 x^5+96 x^4+101 x^3+31 x^2+95 x+19$
- $y^2=66 x^6+90 x^5+82 x^3+7 x^2+41 x+46$
- $y^2=27 x^6+103 x^4+72 x^3+89 x^2+19 x+96$
- $y^2=22 x^6+29 x^5+88 x^4+10 x^3+44 x^2+65 x+84$
- $y^2=16 x^6+42 x^5+42 x^4+20 x^3+24 x^2+49 x+15$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1508906048.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_jt | $2$ | (not in LMFDB) |