Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 249 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0587256576400$, $\pm0.483515829767$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.438848.1 |
Galois group: | $D_{4}$ |
Jacobians: | $45$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10511$ | $163204297$ | $2079541353212$ | $26577287230828889$ | $339452438022934465951$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12784$ | $1441226$ | $163003476$ | $18424118352$ | $2081953209142$ | $235260550464752$ | $26584441599669924$ | $3004041936736787402$ | $339456739034214439584$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):
- $y^2=66 x^6+49 x^5+40 x^4+19 x^3+15 x^2+77 x+72$
- $y^2=66 x^6+109 x^5+65 x^4+62 x^3+61 x^2+110 x+99$
- $y^2=103 x^6+59 x^5+51 x^4+40 x^3+73 x^2+83 x+41$
- $y^2=43 x^6+95 x^4+62 x^3+64 x^2+5 x+92$
- $y^2=7 x^6+37 x^5+109 x^4+9 x^3+53 x^2+65 x+95$
- $y^2=44 x^6+39 x^5+31 x^4+71 x^3+8 x^2+76 x+74$
- $y^2=23 x^6+48 x^5+34 x^4+102 x^3+39 x^2+92 x+43$
- $y^2=110 x^6+81 x^5+111 x^4+38 x^3+8 x^2+58 x+38$
- $y^2=107 x^6+85 x^5+91 x^4+6 x^3+36 x^2+92 x+94$
- $y^2=17 x^6+92 x^5+58 x^4+11 x^3+90 x^2+93 x+8$
- $y^2=23 x^6+51 x^5+3 x^4+67 x^3+x^2+49 x+96$
- $y^2=64 x^6+88 x^5+45 x^4+65 x^3+73 x^2+5 x+79$
- $y^2=81 x^6+5 x^5+56 x^4+102 x^3+71 x^2+81 x+46$
- $y^2=9 x^6+101 x^5+16 x^4+62 x^3+46 x^2+65 x+7$
- $y^2=43 x^6+32 x^5+24 x^4+78 x^3+95 x^2+81 x+39$
- $y^2=89 x^6+10 x^5+9 x^4+73 x^3+85 x^2+55 x+37$
- $y^2=51 x^6+109 x^5+104 x^4+18 x^3+67 x^2+65 x+110$
- $y^2=66 x^6+3 x^5+84 x^4+21 x^3+9 x^2+110 x+73$
- $y^2=56 x^6+75 x^5+9 x^4+20 x^3+30 x^2+50 x+94$
- $y^2=89 x^6+26 x^5+47 x^4+x^3+60 x^2+80 x+99$
- and 25 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.438848.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_jp | $2$ | (not in LMFDB) |