Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 243 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0243649366610$, $\pm0.487990160899$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.12903488.1 |
Galois group: | $D_{4}$ |
Jacobians: | $42$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10505$ | $163048105$ | $2078970090560$ | $26576356046887625$ | $339451161216780990025$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12772$ | $1440830$ | $162997764$ | $18424049052$ | $2081951978014$ | $235260529675676$ | $26584441350870276$ | $3004041934153767710$ | $339456738999908584932$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=56 x^6+58 x^5+5 x^4+52 x^3+73 x^2+111 x+3$
- $y^2=50 x^6+111 x^5+x^4+37 x^3+89 x^2+23 x+49$
- $y^2=86 x^6+19 x^5+57 x^4+73 x^3+82 x^2+45 x+68$
- $y^2=78 x^6+110 x^5+91 x^4+61 x^3+98 x^2+32 x+47$
- $y^2=57 x^6+92 x^5+98 x^4+2 x^3+9 x^2+81 x+29$
- $y^2=7 x^6+78 x^5+78 x^4+85 x^3+25 x^2+50 x+80$
- $y^2=31 x^6+75 x^5+73 x^4+19 x^3+61 x^2+76 x+58$
- $y^2=92 x^6+35 x^5+58 x^4+11 x^3+68 x^2+43 x+56$
- $y^2=45 x^6+50 x^5+94 x^4+80 x^3+79 x^2+43 x+58$
- $y^2=95 x^6+108 x^5+46 x^4+85 x^3+93 x^2+93 x+60$
- $y^2=12 x^6+76 x^5+72 x^4+26 x^3+76 x^2+99 x+80$
- $y^2=55 x^6+63 x^5+101 x^4+112 x^3+38 x^2+59 x+21$
- $y^2=63 x^6+99 x^5+83 x^4+17 x^3+11 x^2+101 x+57$
- $y^2=62 x^6+53 x^5+65 x^4+15 x^2+2 x+18$
- $y^2=65 x^6+90 x^5+47 x^4+104 x^3+16 x^2+16 x+102$
- $y^2=4 x^6+84 x^5+111 x^4+4 x^3+60 x^2+54 x+28$
- $y^2=83 x^6+41 x^5+30 x^4+3 x^3+94 x^2+45 x+74$
- $y^2=5 x^6+27 x^5+80 x^4+39 x^3+112 x^2+3 x+108$
- $y^2=74 x^6+109 x^5+19 x^4+8 x^3+76 x^2+x+107$
- $y^2=9 x^6+28 x^4+78 x^3+45 x^2+100 x+16$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.12903488.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_jj | $2$ | (not in LMFDB) |