Properties

Label 2.113.aw_ji
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 22 x + 242 x^{2} - 2486 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0112770403516$, $\pm0.488722959648$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{105})\)
Galois group:  $C_2^2$
Jacobians:  $32$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10504$ $163022080$ $2078874885256$ $26576198567526400$ $339450934228729425544$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $92$ $12770$ $1440764$ $162996798$ $18424036732$ $2081951752610$ $235260525836764$ $26584441302894718$ $3004041933605912732$ $339456738992222314850$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113^{4}}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{105})\).
Endomorphism algebra over $\overline{\F}_{113}$
The base change of $A$ to $\F_{113^{4}}$ is 1.163047361.ablkk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-105}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.w_ji$2$(not in LMFDB)
2.113.a_aq$8$(not in LMFDB)
2.113.a_q$8$(not in LMFDB)