Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 242 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0112770403516$, $\pm0.488722959648$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{105})\) |
Galois group: | $C_2^2$ |
Jacobians: | $32$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10504$ | $163022080$ | $2078874885256$ | $26576198567526400$ | $339450934228729425544$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12770$ | $1440764$ | $162996798$ | $18424036732$ | $2081951752610$ | $235260525836764$ | $26584441302894718$ | $3004041933605912732$ | $339456738992222314850$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=38 x^6+100 x^5+57 x^4+104 x^3+40 x^2+73 x+5$
- $y^2=60 x^6+62 x^5+68 x^4+102 x^3+29 x^2+64 x+33$
- $y^2=5 x^6+84 x^5+83 x^4+19 x^3+42 x^2+86 x+28$
- $y^2=31 x^6+23 x^5+85 x^4+71 x^3+82 x^2+17 x+5$
- $y^2=81 x^6+100 x^5+96 x^4+72 x^3+41 x^2+95 x+63$
- $y^2=38 x^6+102 x^5+20 x^4+40 x^3+109 x^2+61 x+68$
- $y^2=74 x^6+70 x^5+90 x^4+90 x^2+43 x+74$
- $y^2=3 x^6+61 x^5+38 x^4+2 x^3+12 x^2+24 x+9$
- $y^2=21 x^6+21 x^5+x^4+10 x^3+71 x^2+17 x+59$
- $y^2=93 x^6+89 x^5+2 x^4+76 x^3+108 x^2+89 x+44$
- $y^2=13 x^6+94 x^5+77 x^4+107 x^3+112 x^2+92 x+40$
- $y^2=70 x^6+37 x^5+59 x^4+61 x^3+62 x^2+87 x+88$
- $y^2=67 x^6+48 x^5+89 x^4+90 x^3+25 x^2+14 x+6$
- $y^2=55 x^6+25 x^5+14 x^4+42 x^3+46 x^2+75 x+73$
- $y^2=50 x^6+22 x^5+90 x^4+35 x^3+22 x^2+14 x+107$
- $y^2=23 x^6+25 x^5+50 x^4+58 x^3+18 x^2+60 x+16$
- $y^2=54 x^6+58 x^5+83 x^4+43 x^3+57 x^2+76 x+25$
- $y^2=x^6+108 x^5+92 x^4+87 x^3+18 x^2+27 x+85$
- $y^2=89 x^6+70 x^5+42 x^4+12 x^3+37 x^2+5 x+5$
- $y^2=45 x^6+22 x^5+80 x^4+95 x^3+5 x^2+46 x+46$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113^{4}}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{105})\). |
The base change of $A$ to $\F_{113^{4}}$ is 1.163047361.ablkk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-105}) \)$)$ |
- Endomorphism algebra over $\F_{113^{2}}$
The base change of $A$ to $\F_{113^{2}}$ is the simple isogeny class 2.12769.a_ablkk and its endomorphism algebra is \(\Q(i, \sqrt{105})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_ji | $2$ | (not in LMFDB) |
2.113.a_aq | $8$ | (not in LMFDB) |
2.113.a_q | $8$ | (not in LMFDB) |