Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 21 x + 238 x^{2} - 2373 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0902149467258$, $\pm0.491197023634$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2465623836.1 |
Galois group: | $D_{4}$ |
Jacobians: | $112$ |
Isomorphism classes: | 112 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10614$ | $163476828$ | $2079954466200$ | $26578541356392384$ | $339455283856897184454$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $93$ | $12805$ | $1441512$ | $163011169$ | $18424272813$ | $2081954972050$ | $235260566262381$ | $26584441820132929$ | $3004041940009168536$ | $339456739062792139525$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=96 x^6+51 x^5+35 x^4+72 x^3+31 x^2+65 x+88$
- $y^2=47 x^6+100 x^5+61 x^4+101 x^3+31 x^2+68 x+95$
- $y^2=62 x^6+43 x^5+76 x^4+109 x^3+56 x^2+110 x+106$
- $y^2=63 x^6+107 x^5+78 x^4+77 x^3+19 x^2+10 x+105$
- $y^2=7 x^6+19 x^5+47 x^4+34 x^3+71 x^2+65 x+27$
- $y^2=55 x^6+46 x^5+90 x^4+36 x^3+27 x^2+2 x+79$
- $y^2=79 x^6+105 x^5+71 x^4+68 x^3+86 x^2+16 x+100$
- $y^2=68 x^6+100 x^5+45 x^4+41 x^3+109 x^2+27 x+33$
- $y^2=70 x^6+30 x^5+75 x^4+38 x^3+80 x^2+30 x+112$
- $y^2=16 x^6+35 x^5+33 x^4+88 x^3+107 x^2+98 x+33$
- $y^2=27 x^6+45 x^5+19 x^3+110 x^2+87 x+43$
- $y^2=74 x^6+91 x^5+25 x^4+63 x^3+49 x^2+60 x+15$
- $y^2=99 x^6+19 x^5+59 x^4+110 x^3+20 x^2+37 x+62$
- $y^2=46 x^6+39 x^5+50 x^4+49 x^3+104 x^2+22 x+15$
- $y^2=68 x^6+68 x^5+47 x^4+26 x^3+69 x^2+69 x+46$
- $y^2=13 x^6+109 x^5+31 x^4+86 x^3+8 x^2+25 x+95$
- $y^2=97 x^6+33 x^5+42 x^4+75 x^3+62 x^2+81 x+39$
- $y^2=19 x^6+87 x^5+18 x^4+56 x^3+48 x^2+46 x+70$
- $y^2=111 x^6+4 x^5+99 x^4+41 x^3+47 x^2+84 x+70$
- $y^2=12 x^6+16 x^5+23 x^4+95 x^3+26 x^2+87 x+55$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.2465623836.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.v_je | $2$ | (not in LMFDB) |