Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 21 x + 236 x^{2} - 2373 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0846748317597$, $\pm0.492700375042$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.567305928.1 |
Galois group: | $D_{4}$ |
Jacobians: | $144$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10612$ | $163424800$ | $2079772699648$ | $26578275303888000$ | $339454974328242054772$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $93$ | $12801$ | $1441386$ | $163009537$ | $18424256013$ | $2081954684094$ | $235260561758301$ | $26584441780916353$ | $3004041939816218058$ | $339456739060766156961$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=67 x^6+71 x^5+96 x^4+89 x^3+66 x^2+27 x+40$
- $y^2=4 x^6+39 x^5+41 x^4+26 x^3+87 x^2+4 x+58$
- $y^2=93 x^6+106 x^5+78 x^4+57 x^3+87 x^2+51 x+91$
- $y^2=40 x^6+107 x^5+74 x^4+109 x^3+97 x^2+32 x+26$
- $y^2=2 x^6+89 x^5+82 x^4+100 x^3+47 x^2+63 x+76$
- $y^2=34 x^6+93 x^5+8 x^4+68 x^3+2 x^2+65 x+46$
- $y^2=65 x^6+3 x^5+110 x^4+58 x^3+100 x^2+10 x+86$
- $y^2=69 x^6+54 x^5+30 x^4+90 x^3+12 x^2+102 x+64$
- $y^2=79 x^6+48 x^5+25 x^4+65 x^3+45 x^2+58 x+62$
- $y^2=72 x^5+78 x^4+71 x^3+26 x^2+63 x+26$
- $y^2=108 x^6+64 x^5+84 x^4+100 x^3+92 x^2+95 x+59$
- $y^2=68 x^6+79 x^5+x^4+19 x^3+x^2+64 x+7$
- $y^2=43 x^6+99 x^5+54 x^4+57 x^3+51 x^2+88 x+74$
- $y^2=59 x^6+23 x^5+108 x^4+16 x^3+3 x^2+101 x+93$
- $y^2=110 x^6+112 x^5+3 x^4+53 x^2+77 x+77$
- $y^2=36 x^6+64 x^5+8 x^4+112 x^3+9 x^2+55 x+26$
- $y^2=8 x^6+74 x^5+48 x^4+44 x^3+45 x^2+74 x+2$
- $y^2=79 x^6+41 x^5+60 x^4+60 x^2+75 x+1$
- $y^2=5 x^6+47 x^5+65 x^4+48 x^3+65 x^2+38 x+98$
- $y^2=72 x^6+108 x^5+39 x^4+94 x^3+69 x^2+74 x+19$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.567305928.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.v_jc | $2$ | (not in LMFDB) |