Properties

Label 2.113.av_is
Base field $\F_{113}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 21 x + 113 x^{2} )( 1 + 113 x^{2} )$
  $1 - 21 x + 226 x^{2} - 2373 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0498602789898$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $104$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10602$ $163164780$ $2078863950888$ $26576905919155200$ $339453194533848536922$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $93$ $12781$ $1440756$ $163001137$ $18424159413$ $2081952936034$ $235260534034101$ $26584441501112353$ $3004041937428477108$ $339456739028909272861$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113^{2}}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.av $\times$ 1.113.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{113}$
The base change of $A$ to $\F_{113^{2}}$ is 1.12769.aih $\times$ 1.12769.is. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.v_is$2$(not in LMFDB)