Invariants
This isogeny class is not simple,
primitive,
not ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10602$ |
$163164780$ |
$2078863950888$ |
$26576905919155200$ |
$339453194533848536922$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$93$ |
$12781$ |
$1440756$ |
$163001137$ |
$18424159413$ |
$2081952936034$ |
$235260534034101$ |
$26584441501112353$ |
$3004041937428477108$ |
$339456739028909272861$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):
- $y^2=68 x^6+101 x^5+79 x^4+44 x^3+9 x^2+5 x+16$
- $y^2=39 x^6+39 x^5+75 x^4+35 x^3+79 x^2+31 x+73$
- $y^2=77 x^6+72 x^5+91 x^4+105 x^3+59 x^2+4 x+38$
- $y^2=93 x^6+41 x^5+110 x^4+40 x^3+102 x^2+41 x+55$
- $y^2=14 x^6+63 x^5+91 x^4+17 x^3+81 x^2+16 x+44$
- $y^2=47 x^6+85 x^5+88 x^4+56 x^3+57 x^2+4 x+29$
- $y^2=48 x^6+24 x^5+77 x^4+49 x^3+56 x^2+49 x+10$
- $y^2=15 x^6+60 x^5+86 x^4+2 x^3+41 x^2+41 x+86$
- $y^2=60 x^6+67 x^5+25 x^4+102 x^3+46 x^2+50 x+73$
- $y^2=73 x^6+4 x^5+62 x^4+100 x^3+71 x^2+46 x+21$
- $y^2=57 x^6+95 x^5+32 x^4+23 x^3+52 x^2+108 x+12$
- $y^2=30 x^6+65 x^5+91 x^4+111 x^3+53 x^2+69 x+72$
- $y^2=95 x^6+26 x^5+32 x^4+71 x^3+2 x^2+84 x+94$
- $y^2=63 x^6+56 x^5+63 x^4+27 x^3+46 x^2+83 x+91$
- $y^2=103 x^6+89 x^5+24 x^4+58 x^3+55 x^2+36 x+75$
- $y^2=55 x^6+39 x^5+x^4+5 x^3+66 x^2+6 x+95$
- $y^2=73 x^6+83 x^5+38 x^4+29 x^3+46 x^2+46 x+36$
- $y^2=71 x^6+7 x^5+17 x^4+49 x^3+78 x^2+66 x+45$
- $y^2=110 x^6+45 x^5+80 x^4+51 x^3+13 x^2+20 x+50$
- $y^2=107 x^6+82 x^5+76 x^4+71 x^3+25 x^2+55 x+89$
- and 84 more
- $y^2=10 x^6+5 x^5+14 x^4+109 x^3+42 x^2+60 x+38$
- $y^2=31 x^6+107 x^5+33 x^4+48 x^3+62 x^2+61 x+73$
- $y^2=66 x^6+62 x^5+5 x^4+68 x^3+41 x^2+57 x+46$
- $y^2=47 x^6+34 x^5+43 x^4+70 x^3+7 x^2+50 x+112$
- $y^2=x^6+101 x^5+79 x^4+43 x^3+42 x^2+50 x+49$
- $y^2=62 x^6+6 x^5+90 x^4+63 x^3+47 x^2+41 x+110$
- $y^2=47 x^6+64 x^5+108 x^4+111 x^3+78 x^2+100 x+11$
- $y^2=37 x^6+75 x^5+106 x^4+111 x^3+46 x^2+29 x+71$
- $y^2=4 x^6+86 x^5+25 x^4+25 x^3+76 x^2+103 x+6$
- $y^2=110 x^6+58 x^5+35 x^4+33 x^3+18 x^2+92 x+21$
- $y^2=19 x^6+69 x^5+3 x^4+97 x^3+27 x^2+90 x+43$
- $y^2=85 x^5+53 x^4+69 x^3+4 x^2+39 x+75$
- $y^2=34 x^6+38 x^5+102 x^4+22 x^3+55 x^2+86 x+2$
- $y^2=35 x^6+30 x^5+110 x^4+74 x^3+74 x^2+98 x+29$
- $y^2=79 x^6+111 x^5+80 x^4+107 x^3+93 x^2+112 x+86$
- $y^2=14 x^6+34 x^4+13 x^3+66 x^2+29 x+3$
- $y^2=64 x^6+4 x^5+90 x^4+5 x^3+15 x^2+2 x+5$
- $y^2=94 x^6+109 x^5+71 x^4+68 x^3+49 x^2+74 x+85$
- $y^2=25 x^6+7 x^5+56 x^4+29 x^3+77 x^2+45 x+110$
- $y^2=26 x^6+36 x^5+36 x^4+77 x^3+27 x^2+39 x+15$
- $y^2=74 x^6+77 x^5+45 x^4+49 x^3+58 x^2+112 x+18$
- $y^2=44 x^6+72 x^5+85 x^4+11 x^3+112 x^2+64 x+93$
- $y^2=22 x^6+41 x^5+21 x^4+88 x^3+94 x^2+62 x+108$
- $y^2=28 x^6+68 x^5+23 x^4+20 x^3+15 x^2+82 x+19$
- $y^2=30 x^6+13 x^5+109 x^4+26 x^3+70 x^2+31 x+40$
- $y^2=6 x^6+5 x^5+25 x^4+40 x^3+50 x^2+33 x+7$
- $y^2=12 x^6+4 x^5+98 x^4+93 x^3+46 x^2+89 x+100$
- $y^2=19 x^6+2 x^5+37 x^4+3 x^3+32 x^2+21 x+17$
- $y^2=70 x^6+78 x^5+103 x^4+49 x^3+108 x^2+90 x+71$
- $y^2=21 x^6+34 x^5+50 x^4+81 x^3+86 x^2+16 x+44$
- $y^2=34 x^6+4 x^5+83 x^4+25 x^3+76 x^2+69 x+31$
- $y^2=17 x^6+106 x^5+45 x^4+75 x^3+101 x^2+44 x+53$
- $y^2=36 x^6+82 x^5+40 x^4+72 x^3+14 x^2+46 x+107$
- $y^2=57 x^6+96 x^5+61 x^4+22 x^3+43 x^2+88 x+102$
- $y^2=94 x^6+112 x^5+48 x^4+13 x^3+96 x^2+48 x+18$
- $y^2=50 x^6+25 x^5+45 x^4+77 x^3+83 x^2+100 x+67$
- $y^2=109 x^6+91 x^5+78 x^4+74 x^3+56 x^2+101 x+28$
- $y^2=54 x^6+70 x^5+78 x^4+13 x^3+3 x^2+11 x+86$
- $y^2=83 x^6+97 x^5+60 x^4+10 x^3+36 x^2+40 x+40$
- $y^2=12 x^6+16 x^5+61 x^4+31 x^3+22 x^2+87 x+33$
- $y^2=108 x^6+35 x^5+33 x^4+90 x^3+17 x^2+63 x+12$
- $y^2=67 x^6+53 x^5+63 x^4+34 x^3+46 x^2+34 x+85$
- $y^2=89 x^6+91 x^5+89 x^4+65 x^3+x^2+83 x+61$
- $y^2=14 x^6+61 x^5+53 x^4+28 x^3+86 x^2+107 x+57$
- $y^2=60 x^6+12 x^5+71 x^4+50 x^3+39 x^2+97 x+85$
- $y^2=79 x^6+88 x^5+101 x^4+75 x^3+84 x^2+87 x+59$
- $y^2=38 x^6+35 x^5+92 x^4+33 x^3+108 x^2+66 x+42$
- $y^2=103 x^6+15 x^5+66 x^4+14 x^3+84 x^2+81 x+66$
- $y^2=41 x^6+109 x^5+21 x^4+38 x^3+101 x^2+41 x+68$
- $y^2=71 x^6+82 x^5+83 x^4+31 x^3+65 x^2+59 x+98$
- $y^2=111 x^6+107 x^5+27 x^4+80 x^3+50 x^2+62 x+87$
- $y^2=90 x^6+112 x^5+37 x^4+42 x^3+85 x^2+17 x+9$
- $y^2=70 x^6+4 x^5+12 x^4+34 x^3+101 x^2+70 x+47$
- $y^2=9 x^6+77 x^5+16 x^4+75 x^3+8 x^2+72 x+30$
- $y^2=89 x^6+62 x^5+20 x^4+34 x^3+41 x^2+8 x+31$
- $y^2=112 x^6+45 x^5+73 x^4+46 x^3+4 x^2+36 x+83$
- $y^2=34 x^6+43 x^5+13 x^4+38 x^3+13 x^2+26 x+65$
- $y^2=3 x^6+88 x^5+38 x^4+26 x^3+55 x^2+31 x+29$
- $y^2=4 x^6+64 x^5+46 x^4+27 x^3+75 x^2+78 x+8$
- $y^2=107 x^6+83 x^5+75 x^4+78 x^3+31 x^2+75 x+91$
- $y^2=82 x^6+58 x^5+2 x^4+91 x^3+31 x^2+85 x+67$
- $y^2=9 x^6+39 x^5+3 x^4+28 x^3+51 x^2+43 x+81$
- $y^2=85 x^6+40 x^5+106 x^4+73 x^3+55 x^2+86 x+57$
- $y^2=31 x^6+87 x^5+110 x^4+80 x^3+43 x^2+110 x+94$
- $y^2=91 x^6+95 x^5+58 x^4+31 x^3+66 x^2+58 x+83$
- $y^2=32 x^6+82 x^5+73 x^4+95 x^3+30 x^2+71 x+109$
- $y^2=105 x^6+42 x^5+101 x^4+10 x^3+73 x^2+61 x+75$
- $y^2=54 x^6+35 x^5+16 x^4+20 x^3+94 x^2+38 x+109$
- $y^2=101 x^6+6 x^5+11 x^4+30 x^3+66 x^2+101 x+111$
- $y^2=70 x^6+85 x^5+x^4+82 x^3+65 x^2+59 x+74$
- $y^2=43 x^6+3 x^5+52 x^4+25 x^3+57 x^2+53 x+47$
- $y^2=36 x^6+47 x^5+95 x^4+3 x^3+67 x^2+106 x+48$
- $y^2=70 x^6+9 x^5+13 x^4+67 x^3+42 x^2+87 x+42$
- $y^2=107 x^6+93 x^5+82 x^4+54 x^3+2 x^2+59 x+38$
- $y^2=107 x^6+62 x^5+37 x^4+18 x^3+107 x^2+60 x+77$
- $y^2=55 x^6+86 x^5+99 x^4+69 x^3+108 x^2+14 x+62$
- $y^2=107 x^6+102 x^5+60 x^4+109 x^3+59 x^2+75 x+110$
- $y^2=99 x^6+107 x^5+39 x^4+14 x^3+79 x^2+60 x+2$
- $y^2=34 x^6+9 x^5+76 x^4+71 x^3+51 x^2+81 x+19$
- $y^2=101 x^6+27 x^5+6 x^4+46 x^3+19 x^2+98 x+16$
- $y^2=17 x^6+63 x^5+65 x^4+52 x^3+3 x^2+28 x+85$
- $y^2=52 x^6+34 x^5+39 x^4+20 x^3+82 x^2+66 x+33$
- $y^2=48 x^6+68 x^5+30 x^4+49 x^3+43 x^2+28 x+7$
- $y^2=37 x^6+50 x^5+79 x^4+15 x^3+5 x^2+99 x+75$
All geometric endomorphisms are defined over $\F_{113^{2}}$.
Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.av $\times$ 1.113.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Endomorphism algebra over $\overline{\F}_{113}$
The base change of $A$ to $\F_{113^{2}}$ is 1.12769.aih $\times$ 1.12769.is. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.v_is | $2$ | (not in LMFDB) |