Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 21 x + 224 x^{2} - 2373 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0397408763992$, $\pm0.501419504344$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.159667992.1 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10600$ | $163112800$ | $2078682217600$ | $26576624217456000$ | $339452792144672113000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $93$ | $12777$ | $1440630$ | $162999409$ | $18424137573$ | $2081952524094$ | $235260527399109$ | $26584441426657441$ | $3004041936624482070$ | $339456739017362599257$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=29 x^6+64 x^5+23 x^3+98 x^2+54 x+21$
- $y^2=96 x^6+106 x^5+50 x^4+51 x^3+x^2+50 x+27$
- $y^2=57 x^6+38 x^5+63 x^4+104 x^3+26 x^2+5 x+29$
- $y^2=8 x^6+83 x^5+55 x^4+109 x^3+38 x^2+32 x+100$
- $y^2=38 x^6+111 x^5+21 x^4+58 x^3+56 x^2+27 x+103$
- $y^2=3 x^6+54 x^5+65 x^4+53 x^3+110 x^2+106 x+5$
- $y^2=58 x^6+79 x^5+108 x^4+8 x^3+6 x^2+100 x+15$
- $y^2=31 x^6+106 x^5+17 x^4+43 x^3+84 x^2+59 x+33$
- $y^2=67 x^6+85 x^5+108 x^4+64 x^3+91 x^2+74 x+12$
- $y^2=38 x^6+22 x^5+22 x^4+88 x^3+78 x^2+69 x+85$
- $y^2=20 x^6+88 x^5+35 x^4+101 x^3+77 x^2+28 x+89$
- $y^2=28 x^6+x^5+81 x^4+74 x^3+109 x^2+95 x+14$
- $y^2=71 x^6+88 x^5+105 x^4+19 x^3+40 x^2+57 x+91$
- $y^2=40 x^6+30 x^5+92 x^4+100 x^3+68 x^2+38 x+17$
- $y^2=67 x^6+47 x^5+76 x^4+55 x^3+70 x^2+56 x+60$
- $y^2=41 x^6+76 x^5+97 x^4+46 x^3+69 x^2+68 x+48$
- $y^2=31 x^6+2 x^5+63 x^4+40 x^3+69 x^2+81 x+36$
- $y^2=51 x^6+102 x^5+13 x^4+82 x^3+111 x^2+79 x+1$
- $y^2=6 x^6+47 x^5+104 x^4+111 x^3+2 x^2+83 x+35$
- $y^2=79 x^6+24 x^5+111 x^4+68 x^3+58 x^2+19 x+64$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.159667992.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.v_iq | $2$ | (not in LMFDB) |