Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 251 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.159073951912$, $\pm0.479927973528$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.6728976.2 |
Galois group: | $D_{4}$ |
Jacobians: | $130$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10741$ | $164348041$ | $2082358572244$ | $26582138785889401$ | $339459191292003650461$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12872$ | $1443178$ | $163033236$ | $18424484894$ | $2081957290598$ | $235260589896398$ | $26584441857241828$ | $3004041936859370794$ | $339456739011621813272$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 130 curves (of which all are hyperelliptic):
- $y^2=20 x^6+60 x^5+100 x^4+30 x^3+74 x^2+13 x+4$
- $y^2=26 x^6+69 x^5+52 x^4+30 x^3+6 x^2+84 x+27$
- $y^2=50 x^6+17 x^5+40 x^4+66 x^3+60 x^2+69 x+20$
- $y^2=75 x^6+18 x^5+62 x^4+79 x^3+68 x^2+x+40$
- $y^2=70 x^6+46 x^5+43 x^4+51 x^3+78 x^2+109 x+59$
- $y^2=7 x^6+60 x^5+66 x^4+94 x^2+78 x+19$
- $y^2=89 x^6+40 x^5+12 x^4+23 x^3+13 x^2+6 x+39$
- $y^2=21 x^6+97 x^5+86 x^4+x^3+80 x^2+26 x+54$
- $y^2=46 x^6+6 x^5+62 x^4+94 x^3+73 x^2+100 x+40$
- $y^2=81 x^6+60 x^5+95 x^4+74 x^3+81 x^2+78 x+90$
- $y^2=8 x^6+103 x^5+65 x^4+63 x^3+67 x^2+101 x+93$
- $y^2=74 x^6+37 x^5+46 x^4+24 x^3+2 x^2+103 x+16$
- $y^2=36 x^6+109 x^5+45 x^4+90 x^2+73 x+100$
- $y^2=86 x^6+29 x^5+81 x^4+64 x^3+60 x^2+25 x+110$
- $y^2=48 x^6+104 x^5+24 x^4+59 x^3+8 x^2+95 x+6$
- $y^2=74 x^6+71 x^5+92 x^4+13 x^3+68 x^2+73 x+24$
- $y^2=27 x^6+24 x^5+49 x^4+91 x^3+70 x^2+112 x+73$
- $y^2=108 x^6+66 x^5+66 x^4+106 x^3+2 x^2+99 x+80$
- $y^2=47 x^6+93 x^5+95 x^4+110 x^3+111 x^2+83 x+21$
- $y^2=21 x^6+97 x^5+93 x^4+43 x^3+110 x^2+109 x+2$
- and 110 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.6728976.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_jr | $2$ | (not in LMFDB) |