Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 248 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.153629916349$, $\pm0.482500265648$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4271065344.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10738$ | $164269924$ | $2082098812066$ | $26581844360505616$ | $339459113913089078818$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12866$ | $1442998$ | $163031430$ | $18424480694$ | $2081957281922$ | $235260589380638$ | $26584441879261054$ | $3004041937587240574$ | $339456739019448139586$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=27 x^6+10 x^5+3 x^4+110 x^3+8 x^2+9 x+23$
- $y^2=100 x^6+12 x^5+89 x^4+22 x^2+9 x+82$
- $y^2=50 x^6+24 x^5+86 x^4+37 x^3+102 x^2+79 x+89$
- $y^2=104 x^6+39 x^5+19 x^4+37 x^3+11 x^2+27 x+15$
- $y^2=99 x^6+47 x^5+20 x^4+102 x^3+105 x^2+78 x+109$
- $y^2=28 x^6+13 x^5+78 x^4+13 x^3+27 x^2+16 x+70$
- $y^2=38 x^6+64 x^5+55 x^4+85 x^3+93 x^2+4 x+46$
- $y^2=104 x^6+50 x^5+50 x^4+68 x^3+5 x^2+24 x+44$
- $y^2=95 x^6+100 x^5+58 x^4+103 x^3+51 x^2+92 x+52$
- $y^2=103 x^6+105 x^5+x^4+55 x^3+21 x^2+107 x+83$
- $y^2=31 x^6+30 x^5+x^4+61 x^3+51 x^2+93 x+42$
- $y^2=10 x^6+9 x^5+6 x^4+101 x^3+11 x^2+17 x+104$
- $y^2=100 x^6+45 x^5+81 x^4+8 x^3+78 x^2+108 x+63$
- $y^2=40 x^6+12 x^5+35 x^4+104 x^3+86 x^2+78 x+78$
- $y^2=56 x^6+41 x^5+59 x^4+58 x^3+41 x^2+53 x+58$
- $y^2=23 x^6+106 x^5+107 x^4+23 x^3+41 x^2+61 x+106$
- $y^2=6 x^6+46 x^5+3 x^4+30 x^3+4 x^2+86 x+78$
- $y^2=11 x^6+57 x^5+104 x^4+50 x^3+50 x^2+20 x+10$
- $y^2=78 x^6+64 x^5+20 x^4+46 x^3+22 x^2+x+93$
- $y^2=28 x^6+100 x^5+103 x^4+13 x^3+4 x^2+99 x+39$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.4271065344.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_jo | $2$ | (not in LMFDB) |