Properties

Label 2.113.au_jn
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 247 x^{2} - 2260 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.151799378182$, $\pm0.483346408495$
Angle rank:  $2$ (numerical)
Number field:  4.0.4286718224.1
Galois group:  $D_{4}$
Jacobians:  $72$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10737$ $164243889$ $2082012228324$ $26581744914888681$ $339459080750331318657$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $94$ $12864$ $1442938$ $163030820$ $18424478894$ $2081957270598$ $235260589115198$ $26584441885999684$ $3004041937826304634$ $339456739022059877664$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.4286718224.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.u_jn$2$(not in LMFDB)