Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 247 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.151799378182$, $\pm0.483346408495$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4286718224.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10737$ | $164243889$ | $2082012228324$ | $26581744914888681$ | $339459080750331318657$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12864$ | $1442938$ | $163030820$ | $18424478894$ | $2081957270598$ | $235260589115198$ | $26584441885999684$ | $3004041937826304634$ | $339456739022059877664$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=32 x^6+4 x^5+55 x^4+70 x^3+88 x^2+67 x+5$
- $y^2=70 x^6+8 x^5+11 x^4+93 x^3+31 x^2+32 x+111$
- $y^2=14 x^6+105 x^5+104 x^4+14 x^3+82 x^2+81 x+110$
- $y^2=49 x^6+70 x^5+82 x^4+110 x^3+42 x^2+27 x+92$
- $y^2=44 x^6+18 x^5+46 x^4+81 x^3+72 x^2+42 x+112$
- $y^2=59 x^6+18 x^5+94 x^4+19 x^3+89 x^2+19 x+18$
- $y^2=12 x^6+72 x^5+107 x^4+16 x^3+109 x^2+26 x+109$
- $y^2=103 x^6+23 x^5+37 x^4+80 x^3+9 x^2+34 x+98$
- $y^2=40 x^6+44 x^5+71 x^4+17 x^3+95 x^2+13 x+78$
- $y^2=65 x^6+72 x^5+45 x^4+90 x^3+28 x^2+24 x+42$
- $y^2=55 x^6+12 x^5+37 x^4+37 x^3+10 x^2+12 x+105$
- $y^2=68 x^6+26 x^5+37 x^4+13 x^3+22 x^2+66 x+61$
- $y^2=45 x^6+105 x^5+51 x^4+82 x^3+109 x^2+19 x+86$
- $y^2=20 x^6+55 x^5+99 x^4+99 x^3+41 x^2+35 x+5$
- $y^2=73 x^6+33 x^5+5 x^4+90 x^3+82 x^2+29 x+102$
- $y^2=111 x^6+66 x^5+95 x^4+12 x^3+51 x^2+96 x+53$
- $y^2=65 x^6+52 x^5+74 x^4+91 x^3+83 x^2+100 x+107$
- $y^2=73 x^6+102 x^5+67 x^4+67 x^3+46 x^2+8 x+12$
- $y^2=33 x^6+10 x^5+88 x^4+20 x^3+64 x^2+22 x+44$
- $y^2=5 x^6+43 x^5+73 x^4+80 x^3+84 x^2+97 x+7$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.4286718224.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_jn | $2$ | (not in LMFDB) |