Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 19 x + 113 x^{2} )( 1 - x + 113 x^{2} )$ |
$1 - 20 x + 245 x^{2} - 2260 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.148111132014$, $\pm0.485022436206$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $420$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10735$ | $164191825$ | $2081839065280$ | $26581544067885625$ | $339459003370124781175$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12860$ | $1442818$ | $163029588$ | $18424474694$ | $2081957235230$ | $235260588438998$ | $26584441898416228$ | $3004041938296143394$ | $339456739027251872300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 420 curves (of which all are hyperelliptic):
- $y^2=96 x^6+72 x^5+64 x^4+111 x^3+36 x^2+108 x+89$
- $y^2=53 x^6+51 x^5+111 x^4+52 x^2+12 x+13$
- $y^2=83 x^6+x^5+18 x^4+100 x^3+20 x^2+89 x+83$
- $y^2=10 x^6+86 x^5+77 x^4+47 x^3+39 x^2+31 x+3$
- $y^2=2 x^6+71 x^5+61 x^4+101 x^3+106 x^2+109 x+17$
- $y^2=91 x^6+91 x^5+95 x^4+95 x^3+24 x^2+68 x+34$
- $y^2=78 x^6+77 x^5+47 x^4+100 x^3+106 x^2+42 x+40$
- $y^2=25 x^6+16 x^5+111 x^4+53 x^3+81 x^2+16 x+14$
- $y^2=52 x^6+65 x^5+44 x^4+22 x^3+93 x^2+7 x+30$
- $y^2=94 x^6+3 x^5+44 x^4+62 x^3+70 x^2+41 x+36$
- $y^2=19 x^6+53 x^5+25 x^4+40 x^3+53 x^2+28 x+38$
- $y^2=78 x^6+79 x^5+74 x^4+36 x^3+12 x^2+13 x+33$
- $y^2=x^6+74 x^5+86 x^4+86 x^2+74 x+1$
- $y^2=40 x^6+20 x^5+36 x^4+41 x^3+27 x^2+35 x+94$
- $y^2=3 x^6+9 x^5+28 x^4+51 x^3+68 x^2+65 x+75$
- $y^2=29 x^6+4 x^5+23 x^4+67 x^3+26 x^2+63$
- $y^2=46 x^6+6 x^5+71 x^4+92 x^3+5 x^2+13 x+82$
- $y^2=78 x^6+50 x^5+36 x^4+x^3+36 x^2+50 x+78$
- $y^2=54 x^6+49 x^5+81 x^4+100 x^3+71 x^2+57 x+39$
- $y^2=86 x^6+77 x^5+70 x^4+32 x^3+23 x^2+57 x+36$
- and 400 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.at $\times$ 1.113.ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.as_hz | $2$ | (not in LMFDB) |
2.113.s_hz | $2$ | (not in LMFDB) |
2.113.u_jl | $2$ | (not in LMFDB) |