Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 232 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.122893498163$, $\pm0.495438758091$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4094814464.1 |
Galois group: | $D_{4}$ |
Jacobians: | $136$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10722$ | $163853604$ | $2080713646674$ | $26580174996834576$ | $339458141120385958482$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12834$ | $1442038$ | $163021190$ | $18424427894$ | $2081956585698$ | $235260578883998$ | $26584441930747774$ | $3004041940814305534$ | $339456739056415345314$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=51 x^6+109 x^5+104 x^4+87 x^3+85 x^2+103 x+20$
- $y^2=112 x^6+27 x^5+11 x^4+42 x^3+71 x^2+79 x+112$
- $y^2=104 x^6+41 x^5+38 x^4+43 x^3+46 x^2+104 x+103$
- $y^2=3 x^6+28 x^5+56 x^4+90 x^3+69 x^2+42 x+24$
- $y^2=20 x^6+102 x^5+91 x^4+47 x^3+44 x^2+41 x+4$
- $y^2=59 x^6+97 x^5+86 x^4+110 x^3+41 x^2+16 x+92$
- $y^2=48 x^6+15 x^5+93 x^4+79 x^3+21 x^2+27 x+99$
- $y^2=4 x^6+73 x^5+92 x^4+11 x^3+4 x^2+63 x+86$
- $y^2=110 x^6+41 x^5+112 x^4+6 x^3+54 x^2+23 x+87$
- $y^2=18 x^6+63 x^5+2 x^4+53 x^3+31 x^2+38 x+34$
- $y^2=38 x^6+69 x^5+52 x^4+107 x^3+21 x^2+60 x+40$
- $y^2=36 x^6+53 x^5+18 x^4+87 x^3+40 x^2+100 x+99$
- $y^2=19 x^6+34 x^5+18 x^4+94 x^3+45 x^2+12 x+23$
- $y^2=43 x^5+53 x^4+44 x^3+4 x^2+50 x+48$
- $y^2=74 x^6+72 x^5+37 x^4+44 x^3+58 x^2+72 x+73$
- $y^2=39 x^6+74 x^5+95 x^4+105 x^3+32 x^2+98 x+27$
- $y^2=84 x^6+104 x^5+77 x^4+30 x^3+37 x^2+58 x+78$
- $y^2=105 x^6+91 x^5+41 x^4+32 x^3+32 x^2+35 x+71$
- $y^2=17 x^6+54 x^5+43 x^4+36 x^3+15 x^2+67 x+36$
- $y^2=3 x^6+50 x^5+35 x^4+52 x^3+90 x^2+21 x+75$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.4094814464.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_iy | $2$ | (not in LMFDB) |