Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 227 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.112341876511$, $\pm0.499249516502$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.47255824.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 216 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10717$ | $163723609$ | $2080280856724$ | $26579619091396441$ | $339457643664576732757$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12824$ | $1441738$ | $163017780$ | $18424400894$ | $2081956138598$ | $235260572575598$ | $26584441912759204$ | $3004041941375053834$ | $339456739063174169864$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=110 x^6+59 x^5+76 x^4+96 x^3+87 x^2+28 x+13$
- $y^2=39 x^6+46 x^5+x^4+16 x^3+98 x^2+15 x+110$
- $y^2=57 x^6+106 x^5+109 x^4+6 x^3+35 x^2+59 x+28$
- $y^2=61 x^6+101 x^5+30 x^4+103 x^3+75 x^2+9 x+36$
- $y^2=20 x^6+70 x^5+74 x^4+67 x^3+100 x^2+75 x+94$
- $y^2=96 x^6+100 x^5+27 x^4+99 x^3+5 x^2+48 x+110$
- $y^2=63 x^6+112 x^5+105 x^4+74 x^3+58 x^2+47 x+22$
- $y^2=68 x^6+85 x^5+5 x^4+85 x^3+37 x^2+68 x+57$
- $y^2=41 x^6+87 x^5+30 x^4+20 x^3+21 x^2+8 x+92$
- $y^2=8 x^6+13 x^5+87 x^4+30 x^3+69 x^2+94 x+62$
- $y^2=67 x^6+69 x^5+85 x^4+45 x^3+30 x^2+45 x+73$
- $y^2=58 x^6+64 x^5+99 x^4+30 x^3+71 x^2+14 x+87$
- $y^2=88 x^6+34 x^5+64 x^4+48 x^3+13 x^2+5 x+89$
- $y^2=62 x^6+85 x^5+48 x^4+26 x^3+100 x^2+62 x+66$
- $y^2=90 x^6+9 x^5+97 x^4+72 x^3+74 x^2+77 x+100$
- $y^2=86 x^6+61 x^5+35 x^4+105 x^3+85 x^2+90 x+17$
- $y^2=76 x^6+94 x^5+60 x^4+54 x^3+9 x^2+108 x+96$
- $y^2=34 x^6+112 x^5+63 x^4+43 x^3+108 x^2+18 x+107$
- $y^2=3 x^6+45 x^5+92 x^4+56 x^3+38 x^2+41 x+85$
- $y^2=48 x^6+104 x^5+71 x^4+109 x^3+103 x+5$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.47255824.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_it | $2$ | (not in LMFDB) |