Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 215 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0833455384368$, $\pm0.508020676869$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2697017616.1 |
Galois group: | $D_{4}$ |
Jacobians: | $68$ |
Isomorphism classes: | 136 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10705$ | $163411825$ | $2079242298340$ | $26578218409515625$ | $339456073907576181025$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12800$ | $1441018$ | $163009188$ | $18424315694$ | $2081954606150$ | $235260550609598$ | $26584441772706628$ | $3004041941215647994$ | $339456739059826364000$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=x^6+60 x^5+30 x^4+67 x^3+9 x^2+23 x+42$
- $y^2=28 x^6+31 x^5+63 x^4+84 x^3+105 x^2+98 x+72$
- $y^2=83 x^6+57 x^5+60 x^4+93 x^3+92 x^2+66 x+80$
- $y^2=66 x^6+43 x^5+100 x^4+106 x^3+13 x^2+30 x+48$
- $y^2=39 x^6+7 x^5+3 x^4+14 x^3+46 x^2+35 x+9$
- $y^2=42 x^6+61 x^5+89 x^4+4 x^3+86 x^2+8 x+100$
- $y^2=47 x^6+83 x^5+80 x^4+74 x^3+55 x^2+71 x+75$
- $y^2=90 x^6+112 x^5+38 x^4+97 x^3+19 x^2+41 x+52$
- $y^2=3 x^6+77 x^5+106 x^4+28 x^3+4 x^2+34 x+15$
- $y^2=6 x^6+80 x^5+71 x^4+88 x^3+62 x^2+66$
- $y^2=65 x^6+x^5+10 x^4+4 x^3+4 x^2+104 x+54$
- $y^2=64 x^6+78 x^5+86 x^4+101 x^3+69 x^2+97 x+34$
- $y^2=71 x^6+84 x^5+34 x^4+32 x^3+70 x^2+106 x+90$
- $y^2=20 x^6+60 x^5+10 x^4+97 x^3+28 x^2+19 x+110$
- $y^2=65 x^6+103 x^5+111 x^4+20 x^3+85 x^2+110 x+64$
- $y^2=77 x^6+53 x^5+22 x^4+16 x^3+104 x^2+7 x+59$
- $y^2=23 x^6+20 x^5+7 x^4+42 x^3+26 x^2+19 x+64$
- $y^2=112 x^6+51 x^4+112 x^3+45 x^2+90 x+5$
- $y^2=84 x^6+22 x^5+111 x^4+31 x^3+106 x^2+29 x+72$
- $y^2=79 x^6+22 x^5+3 x^4+95 x^3+62 x^2+34 x+72$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.2697017616.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_ih | $2$ | (not in LMFDB) |