Properties

Label 2.113.au_if
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 213 x^{2} - 2260 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0776925923112$, $\pm0.509435948749$
Angle rank:  $2$ (numerical)
Number field:  4.0.152219249.1
Galois group:  $D_{4}$
Jacobians:  $96$
Isomorphism classes:  96

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10703$ $163359889$ $2079069223616$ $26577975833400761$ $339455760692254718743$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $94$ $12796$ $1440898$ $163007700$ $18424298694$ $2081954286622$ $235260545937238$ $26584441733606244$ $3004041940928922274$ $339456739055628035436$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.152219249.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.u_if$2$(not in LMFDB)