Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 212 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0747295012116$, $\pm0.510138955442$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2296445184.1 |
Galois group: | $D_{4}$ |
Jacobians: | $64$ |
Isomorphism classes: | 128 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10702$ | $163333924$ | $2078982688174$ | $26577853567182736$ | $339455598557176453582$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12794$ | $1440838$ | $163006950$ | $18424289894$ | $2081954119898$ | $235260543486398$ | $26584441712157694$ | $3004041940752992734$ | $339456739053051079514$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=3 x^6+9 x^5+49 x^4+75 x^3+20 x^2+105 x+63$
- $y^2=43 x^6+89 x^5+65 x^4+25 x^3+17 x^2+50 x+102$
- $y^2=13 x^6+40 x^5+110 x^4+9 x^3+41 x^2+83 x+112$
- $y^2=109 x^6+102 x^5+112 x^4+57 x^3+6 x^2+26 x+109$
- $y^2=48 x^6+63 x^5+8 x^4+54 x^3+34 x^2+92 x+86$
- $y^2=80 x^6+83 x^5+27 x^4+43 x^3+49 x^2+5 x+107$
- $y^2=54 x^6+89 x^5+51 x^4+103 x^3+24 x^2+88 x+93$
- $y^2=7 x^6+3 x^5+21 x^4+31 x^3+89 x^2+54 x+80$
- $y^2=29 x^6+27 x^5+73 x^4+91 x^3+49 x^2+50 x+112$
- $y^2=88 x^6+22 x^5+93 x^4+69 x^3+55 x^2+58 x+59$
- $y^2=61 x^6+92 x^5+68 x^4+103 x^3+100 x^2+54 x+33$
- $y^2=22 x^6+44 x^5+50 x^4+34 x^3+37 x^2+37 x+18$
- $y^2=7 x^6+43 x^5+41 x^4+24 x^3+38 x^2+61 x+93$
- $y^2=85 x^6+3 x^5+61 x^4+29 x^3+29 x^2+8 x+47$
- $y^2=58 x^6+74 x^5+97 x^4+101 x^3+112 x^2+86 x+42$
- $y^2=65 x^6+63 x^5+90 x^4+17 x^3+112 x^2+18 x+51$
- $y^2=89 x^6+29 x^5+36 x^4+19 x^3+x^2+10 x+48$
- $y^2=103 x^6+62 x^5+26 x^4+93 x^3+45 x^2+80 x+45$
- $y^2=45 x^6+23 x^5+33 x^4+42 x^3+89 x^2+99 x+49$
- $y^2=16 x^6+21 x^5+54 x^4+64 x^3+105 x^2+58 x+21$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.2296445184.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_ie | $2$ | (not in LMFDB) |