Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 21 x + 113 x^{2} )( 1 + x + 113 x^{2} )$ |
$1 - 20 x + 205 x^{2} - 2260 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.0498602789898$, $\pm0.514977563794$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $150$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10695$ | $163152225$ | $2078376975360$ | $26576979444185625$ | $339454360433080350975$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12780$ | $1440418$ | $163001588$ | $18424222694$ | $2081952821790$ | $235260524111798$ | $26584441523944228$ | $3004041938852960194$ | $339456739024904787900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):
- $y^2=64 x^6+18 x^5+79 x^4+69 x^3+19 x^2+65 x+107$
- $y^2=84 x^6+36 x^5+34 x^4+44 x^3+29 x^2+14 x+44$
- $y^2=89 x^6+87 x^5+31 x^4+56 x^3+31 x^2+87 x+89$
- $y^2=89 x^6+6 x^5+69 x^4+42 x^3+29 x^2+80 x+107$
- $y^2=22 x^6+3 x^5+76 x^4+28 x^3+32 x^2+69 x+19$
- $y^2=72 x^6+26 x^5+95 x^4+42 x^3+27 x^2+4 x+9$
- $y^2=11 x^6+63 x^5+81 x^4+105 x^3+70 x^2+83 x+22$
- $y^2=86 x^6+7 x^5+110 x^4+21 x^3+8 x^2+90 x+77$
- $y^2=x^6+38 x^5+107 x^4+39 x^3+49 x^2+56 x+44$
- $y^2=34 x^6+110 x^5+68 x^4+56 x^3+14 x^2+71 x+15$
- $y^2=21 x^6+106 x^5+27 x^4+109 x^3+56 x^2+21 x+61$
- $y^2=35 x^6+65 x^5+6 x^4+28 x^3+112 x^2+58 x+54$
- $y^2=9 x^6+37 x^5+87 x^4+34 x^3+17 x^2+35 x+82$
- $y^2=79 x^6+48 x^5+49 x^4+47 x^3+23 x^2+39 x+79$
- $y^2=11 x^6+39 x^5+105 x^4+36 x^3+105 x^2+39 x+11$
- $y^2=88 x^6+111 x^5+16 x^4+35 x^3+7 x^2+74 x+60$
- $y^2=59 x^6+87 x^5+32 x^4+55 x^3+32 x^2+87 x+59$
- $y^2=57 x^6+25 x^5+94 x^4+99 x^3+6 x^2+68 x+83$
- $y^2=18 x^6+22 x^5+73 x^4+23 x^3+73 x^2+22 x+18$
- $y^2=101 x^6+100 x^5+69 x^4+35 x^3+11 x^2+13 x+108$
- and 130 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.av $\times$ 1.113.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.aw_jn | $2$ | (not in LMFDB) |
2.113.u_hx | $2$ | (not in LMFDB) |
2.113.w_jn | $2$ | (not in LMFDB) |