Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 203 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0402514335932$, $\pm0.516334722079$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.784529424.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10693$ | $163100329$ | $2078203925716$ | $26576723825492281$ | $339453973518779345293$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12776$ | $1440298$ | $163000020$ | $18424201694$ | $2081952408422$ | $235260517837838$ | $26584441457078884$ | $3004041938075338474$ | $339456739013214924536$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=53 x^6+57 x^5+18 x^4+45 x^3+2 x^2+94 x+48$
- $y^2=17 x^6+8 x^5+67 x^4+16 x^3+26 x^2+9 x+7$
- $y^2=63 x^6+98 x^5+49 x^4+104 x^3+6 x^2+76 x+42$
- $y^2=3 x^6+107 x^5+25 x^4+5 x^3+96 x^2+5 x+50$
- $y^2=46 x^6+67 x^5+15 x^4+23 x^3+91 x^2+27 x+39$
- $y^2=29 x^6+109 x^5+69 x^4+111 x^3+x^2+97 x+101$
- $y^2=49 x^6+41 x^5+78 x^4+45 x^3+29 x^2+49 x+27$
- $y^2=56 x^6+72 x^5+103 x^4+36 x^3+3 x^2+71 x+69$
- $y^2=24 x^6+85 x^5+77 x^4+35 x^3+36 x^2+84 x+92$
- $y^2=18 x^6+60 x^5+23 x^4+44 x^3+12 x^2+47 x+30$
- $y^2=45 x^6+59 x^5+44 x^4+74 x^3+98 x^2+68 x+27$
- $y^2=107 x^6+20 x^5+58 x^4+18 x^3+74 x^2+17 x+75$
- $y^2=54 x^6+56 x^5+55 x^4+16 x^3+55 x^2+6 x+100$
- $y^2=11 x^6+111 x^5+43 x^4+77 x^3+78 x^2+9 x+91$
- $y^2=101 x^6+52 x^5+86 x^4+33 x^3+78 x^2+90 x+106$
- $y^2=59 x^6+25 x^5+72 x^4+16 x^3+83 x^2+14 x+37$
- $y^2=5 x^6+43 x^5+30 x^4+56 x^3+111 x^2+97 x+29$
- $y^2=88 x^6+62 x^5+97 x^4+22 x^3+4 x^2+80 x+45$
- $y^2=8 x^6+4 x^5+27 x^4+92 x^3+54 x^2+107 x+2$
- $y^2=89 x^6+37 x^5+32 x^4+53 x^3+52 x^2+87 x+27$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.784529424.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_hv | $2$ | (not in LMFDB) |