Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 39 x + 605 x^{2} - 4407 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0784394555333$, $\pm0.167562406750$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.76725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8929$ | $159123709$ | $2079422316409$ | $26584264839081141$ | $339459443628842308864$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $75$ | $12459$ | $1441143$ | $163046275$ | $18424498590$ | $2081954372163$ | $235260579014991$ | $26584442212881379$ | $3004041939986110779$ | $339456739001621333214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=95 x^6+58 x^5+98 x^4+6 x^3+105 x^2+35 x+17$
- $y^2=8 x^6+10 x^5+40 x^4+38 x^3+74 x^2+64 x+12$
- $y^2=83 x^6+94 x^5+32 x^4+98 x^3+80 x^2+47 x+93$
- $y^2=14 x^6+50 x^5+32 x^4+110 x^3+7 x^2+111 x+101$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.76725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bn_xh | $2$ | (not in LMFDB) |