Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 20 x + 113 x^{2} )( 1 - 16 x + 113 x^{2} )$ |
$1 - 36 x + 546 x^{2} - 4068 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.110150159186$, $\pm0.228810695365$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $36$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9212$ | $160473040$ | $2082108851228$ | $26587686780928000$ | $339462031324100340572$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $12566$ | $1443006$ | $163067262$ | $18424639038$ | $2081954272214$ | $235260561489486$ | $26584441951774078$ | $3004041938042961198$ | $339456739004455819286$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=71 x^6+98 x^5+108 x^4+40 x^3+27 x^2+105 x+17$
- $y^2=70 x^6+58 x^5+20 x^4+78 x^3+68 x^2+110 x+89$
- $y^2=104 x^6+56 x^5+43 x^4+95 x^3+51 x^2+19 x+79$
- $y^2=27 x^6+105 x^5+84 x^4+63 x^3+73 x^2+7 x+7$
- $y^2=87 x^6+25 x^5+54 x^4+71 x^3+54 x^2+25 x+87$
- $y^2=42 x^6+52 x^5+85 x^4+101 x^3+17 x^2+71 x+16$
- $y^2=34 x^6+88 x^5+48 x^4+37 x^3+5 x^2+90 x+110$
- $y^2=17 x^6+90 x^5+76 x^4+73 x^3+11 x^2+33 x+52$
- $y^2=62 x^6+48 x^5+93 x^4+29 x^3+102 x^2+19 x+10$
- $y^2=35 x^6+103 x^5+106 x^4+41 x^3+77 x^2+33 x+84$
- $y^2=40 x^6+68 x^5+24 x^4+93 x^3+24 x^2+68 x+40$
- $y^2=97 x^6+66 x^5+82 x^4+106 x^3+16 x^2+x+5$
- $y^2=75 x^6+43 x^5+66 x^4+51 x^3+66 x^2+43 x+75$
- $y^2=77 x^6+21 x^5+9 x^4+107 x^3+41 x^2+47 x+96$
- $y^2=80 x^6+75 x^5+100 x^4+9 x^3+52 x^2+70 x+78$
- $y^2=84 x^6+61 x^5+9 x^4+19 x^3+17 x^2+85 x+66$
- $y^2=49 x^6+96 x^5+68 x^4+63 x^3+84 x^2+107 x+98$
- $y^2=17 x^6+15 x^5+54 x^4+8 x^3+54 x^2+15 x+17$
- $y^2=70 x^6+90 x^5+99 x^4+83 x^3+99 x^2+90 x+70$
- $y^2=88 x^6+110 x^5+66 x^4+81 x^3+9 x^2+28 x+3$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.au $\times$ 1.113.aq and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.