Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 19 x + 113 x^{2} )( 1 - 16 x + 113 x^{2} )$ |
$1 - 35 x + 530 x^{2} - 3955 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.148111132014$, $\pm0.228810695365$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $18$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9310$ | $160969900$ | $2083267120480$ | $26589651961600000$ | $339464667533711745550$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $79$ | $12605$ | $1443808$ | $163079313$ | $18424782119$ | $2081955585890$ | $235260568883783$ | $26584441920742753$ | $3004041936314164384$ | $339456738971650064525$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=10 x^6+29 x^5+66 x^4+32 x^3+6 x^2+81 x+3$
- $y^2=74 x^6+100 x^5+21 x^4+65 x^3+58 x^2+58 x+82$
- $y^2=55 x^6+63 x^5+45 x^4+14 x^3+12 x^2+106 x+47$
- $y^2=87 x^6+48 x^5+87 x^4+16 x^3+80 x^2+19 x+89$
- $y^2=44 x^6+19 x^5+66 x^4+33 x^3+112 x^2+37 x+55$
- $y^2=39 x^6+15 x^5+39 x^4+89 x^3+55 x^2+49 x+73$
- $y^2=48 x^6+68 x^5+34 x^4+5 x^3+6 x^2+73 x+20$
- $y^2=111 x^6+24 x^5+94 x^4+70 x^3+35 x^2+55 x+40$
- $y^2=62 x^6+6 x^5+103 x^4+50 x^3+42 x^2+55 x+34$
- $y^2=15 x^6+15 x^5+59 x^4+17 x^3+66 x^2+104 x+48$
- $y^2=52 x^6+53 x^5+82 x^4+49 x^3+48 x^2+31 x+58$
- $y^2=37 x^6+95 x^5+35 x^4+19 x^3+103 x^2+10 x+18$
- $y^2=26 x^6+72 x^5+86 x^4+93 x^3+112 x^2+16 x+41$
- $y^2=5 x^6+45 x^5+26 x^4+30 x^3+23 x+27$
- $y^2=23 x^6+103 x^5+17 x^4+5 x^3+17 x^2+111 x+6$
- $y^2=75 x^6+30 x^5+29 x^4+53 x^3+9 x^2+12 x+69$
- $y^2=39 x^6+107 x^5+112 x^4+26 x^3+93 x^2+2 x+111$
- $y^2=29 x^6+52 x^5+85 x^4+12 x^3+63 x+93$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.at $\times$ 1.113.aq and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.