Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 34 x + 509 x^{2} - 3842 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.132326794770$, $\pm0.260064913325$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.10202688.2 |
Galois group: | $D_{4}$ |
Jacobians: | $14$ |
Isomorphism classes: | 14 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9403$ | $161308465$ | $2083523096428$ | $26588955791718025$ | $339462106911302530723$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $12632$ | $1443986$ | $163075044$ | $18424643140$ | $2081953510454$ | $235260551977972$ | $26584441933928836$ | $3004041939181125938$ | $339456739023104705432$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=40 x^6+76 x^5+7 x^4+38 x^3+71 x^2+6 x+6$
- $y^2=98 x^6+94 x^5+93 x^4+49 x^3+11 x^2+26 x+61$
- $y^2=57 x^6+37 x^5+107 x^4+35 x^3+59 x^2+8 x+38$
- $y^2=47 x^6+104 x^5+39 x^4+109 x^3+50 x^2+50 x+44$
- $y^2=22 x^6+93 x^5+105 x^4+15 x^3+108 x^2+52 x+86$
- $y^2=62 x^6+70 x^5+45 x^4+54 x^3+49 x^2+87 x+108$
- $y^2=90 x^6+22 x^5+111 x^4+66 x^3+23 x^2+4 x+5$
- $y^2=79 x^6+13 x^5+36 x^4+25 x^3+19 x^2+73 x+14$
- $y^2=96 x^6+107 x^5+34 x^4+69 x^3+76 x^2+10 x+2$
- $y^2=75 x^6+67 x^5+57 x^4+105 x^3+101 x^2+8 x+42$
- $y^2=20 x^6+24 x^5+7 x^4+78 x^3+61 x^2+63 x+102$
- $y^2=98 x^6+103 x^5+72 x^4+112 x^3+29 x^2+92 x+83$
- $y^2=12 x^6+83 x^5+62 x^4+106 x^3+57 x^2+88 x+43$
- $y^2=98 x^6+60 x^5+39 x^4+92 x^3+5 x^2+22 x+35$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.10202688.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bi_tp | $2$ | (not in LMFDB) |