Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 34 x + 504 x^{2} - 3842 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0951939817064$, $\pm0.277435139411$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.410432.1 |
Galois group: | $D_{4}$ |
Jacobians: | $42$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9398$ | $161175700$ | $2082785521238$ | $26586837522434000$ | $339458097749389271398$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $12622$ | $1443476$ | $163062054$ | $18424425540$ | $2081950965694$ | $235260533187872$ | $26584441916263806$ | $3004041941071957568$ | $339456739056622954782$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=49 x^6+95 x^5+8 x^4+88 x^3+16 x^2+68 x+105$
- $y^2=35 x^6+43 x^5+13 x^4+5 x^3+100 x^2+101 x+108$
- $y^2=2 x^6+88 x^5+96 x^4+6 x^3+35 x^2+101 x+89$
- $y^2=65 x^6+73 x^5+84 x^4+34 x^3+30 x^2+84$
- $y^2=59 x^6+43 x^5+36 x^4+110 x^3+63 x^2+104 x+10$
- $y^2=55 x^6+16 x^5+66 x^4+55 x^3+68 x^2+111 x+69$
- $y^2=79 x^6+24 x^5+36 x^4+41 x^3+90 x^2+21 x+17$
- $y^2=44 x^6+47 x^5+98 x^4+106 x^3+16 x^2+20 x+10$
- $y^2=47 x^6+95 x^5+97 x^4+78 x^3+57 x^2+25 x+38$
- $y^2=7 x^6+77 x^5+54 x^4+43 x^3+14 x^2+69 x+83$
- $y^2=52 x^6+108 x^5+89 x^4+31 x^3+63 x^2+79 x+33$
- $y^2=34 x^6+99 x^5+41 x^4+27 x^3+60 x^2+66 x+86$
- $y^2=75 x^6+84 x^5+12 x^4+54 x^3+40 x^2+19 x+7$
- $y^2=9 x^6+x^5+101 x^4+4 x^3+52 x^2+58 x+39$
- $y^2=29 x^5+14 x^4+22 x^3+82 x^2+8 x+3$
- $y^2=81 x^6+63 x^5+26 x^4+93 x^3+112 x^2+101 x+95$
- $y^2=89 x^6+76 x^5+45 x^4+99 x^3+84 x^2+42 x+71$
- $y^2=65 x^6+26 x^5+76 x^4+75 x^3+66 x^2+23 x+90$
- $y^2=84 x^6+11 x^5+93 x^4+91 x^3+56 x^2+34 x+10$
- $y^2=111 x^6+11 x^5+17 x^4+23 x^3+56 x^2+77 x+75$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.410432.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bi_tk | $2$ | (not in LMFDB) |