Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 21 x + 113 x^{2} )( 1 - 13 x + 113 x^{2} )$ |
$1 - 34 x + 499 x^{2} - 3842 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.0498602789898$, $\pm0.290579079721$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $36$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9393$ | $161042985$ | $2082048021648$ | $26584702995940425$ | $339453931997677361073$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $12612$ | $1442966$ | $163048964$ | $18424199440$ | $2081948051934$ | $235260503533072$ | $26584441656502276$ | $3004041938655930998$ | $339456739027307112132$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=67 x^6+69 x^5+51 x^4+13 x^3+44 x^2+44 x+70$
- $y^2=38 x^6+12 x^5+22 x^4+55 x^3+52 x^2+110 x+70$
- $y^2=3 x^6+30 x^5+84 x^4+87 x^3+3 x^2+78 x+55$
- $y^2=4 x^6+19 x^5+72 x^4+12 x^3+47 x^2+33 x+90$
- $y^2=82 x^6+60 x^5+19 x^4+8 x^3+28 x^2+74 x+2$
- $y^2=107 x^6+79 x^5+80 x^4+57 x^3+47 x^2+90 x+65$
- $y^2=54 x^6+78 x^5+67 x^4+38 x^3+3 x^2+83 x+72$
- $y^2=20 x^6+54 x^5+77 x^4+70 x^3+89 x^2+103 x+87$
- $y^2=63 x^6+18 x^5+104 x^4+54 x^3+72 x^2+64 x+64$
- $y^2=73 x^6+16 x^5+83 x^4+12 x^3+59 x^2+109 x+96$
- $y^2=53 x^6+19 x^5+16 x^4+92 x^3+52 x^2+69 x+101$
- $y^2=80 x^6+8 x^5+96 x^4+18 x^3+6 x^2+77 x+21$
- $y^2=53 x^6+79 x^5+57 x^4+93 x^3+13 x^2+25 x+67$
- $y^2=30 x^6+54 x^5+91 x^4+17 x^3+27 x^2+11 x+34$
- $y^2=47 x^6+45 x^5+95 x^4+86 x^3+44 x^2+63 x+104$
- $y^2=86 x^6+18 x^5+50 x^4+78 x^3+74 x^2+102 x+9$
- $y^2=84 x^6+97 x^5+100 x^4+59 x^3+22 x^2+103 x+43$
- $y^2=71 x^6+10 x^5+98 x^4+4 x^3+72 x^2+27 x+20$
- $y^2=19 x^6+87 x^5+58 x^4+75 x^3+70 x^2+41 x+65$
- $y^2=109 x^6+5 x^5+106 x^4+92 x^3+51 x^2+74 x+102$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.av $\times$ 1.113.an and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ai_abv | $2$ | (not in LMFDB) |
2.113.i_abv | $2$ | (not in LMFDB) |
2.113.bi_tf | $2$ | (not in LMFDB) |