Properties

Label 2.113.abg_rw
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 32 x + 464 x^{2} - 3616 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0988843764289$, $\pm0.313475432574$
Angle rank:  $2$ (numerical)
Number field:  4.0.848128.2
Galois group:  $D_{4}$
Jacobians:  $36$
Isomorphism classes:  36

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9586$ $161830852$ $2083290266482$ $26586008015213584$ $339455600551796283826$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $12674$ $1443826$ $163056966$ $18424290002$ $2081949900482$ $235260540326642$ $26584442195396734$ $3004041944179866322$ $339456739062644111234$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.848128.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.bg_rw$2$(not in LMFDB)