Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 32 x + 464 x^{2} - 3616 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0988843764289$, $\pm0.313475432574$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.848128.2 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 36 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9586$ | $161830852$ | $2083290266482$ | $26586008015213584$ | $339455600551796283826$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $12674$ | $1443826$ | $163056966$ | $18424290002$ | $2081949900482$ | $235260540326642$ | $26584442195396734$ | $3004041944179866322$ | $339456739062644111234$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=40 x^6+86 x^5+29 x^4+83 x^3+20 x^2+5 x+48$
- $y^2=110 x^6+77 x^5+89 x^4+71 x^3+75 x^2+11 x+105$
- $y^2=5 x^6+47 x^5+9 x^4+79 x^3+109 x^2+12 x+100$
- $y^2=5 x^6+15 x^5+103 x^4+75 x^3+5 x^2+4 x+53$
- $y^2=65 x^6+69 x^5+35 x^4+60 x^3+90 x^2+43 x+29$
- $y^2=101 x^6+102 x^5+46 x^4+17 x^3+108 x^2+78 x+12$
- $y^2=44 x^6+26 x^5+74 x^4+27 x^3+16 x^2+57 x+101$
- $y^2=18 x^6+94 x^5+45 x^4+82 x^3+17 x^2+101 x+55$
- $y^2=72 x^6+66 x^5+34 x^4+82 x^3+90 x+73$
- $y^2=40 x^6+90 x^5+86 x^4+88 x^3+105 x^2+72 x+6$
- $y^2=61 x^6+105 x^5+104 x^4+52 x^3+82 x^2+73 x+23$
- $y^2=47 x^6+101 x^5+61 x^4+21 x^3+96 x^2+17 x+103$
- $y^2=56 x^6+47 x^4+94 x^3+7 x^2+17 x+21$
- $y^2=20 x^6+96 x^5+17 x^4+110 x^3+96 x^2+83 x+110$
- $y^2=63 x^6+31 x^5+35 x^4+13 x^3+37 x^2+15 x+106$
- $y^2=23 x^6+10 x^5+29 x^4+56 x^3+3 x^2+79 x+59$
- $y^2=59 x^6+63 x^5+104 x^4+70 x^3+48 x^2+35 x+74$
- $y^2=19 x^6+62 x^5+9 x^4+54 x^3+5 x^2+7 x+28$
- $y^2=80 x^6+43 x^5+17 x^4+75 x^3+92 x^2+48 x+86$
- $y^2=40 x^6+33 x^5+68 x^4+75 x^3+51 x^2+34 x+90$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.848128.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bg_rw | $2$ | (not in LMFDB) |