Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 32 x + 462 x^{2} - 3616 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0869435566339$, $\pm0.317581995421$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $128$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9584$ | $161777920$ | $2083012714736$ | $26585276207206400$ | $339454356543384450544$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $12670$ | $1443634$ | $163052478$ | $18424222482$ | $2081949189310$ | $235260534862834$ | $26584442158567038$ | $3004041943800723922$ | $339456739057383364350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=100 x^6+48 x^5+97 x^4+92 x^3+104 x^2+7 x+41$
- $y^2=75 x^6+63 x^5+31 x^4+39 x^3+78 x^2+24 x+35$
- $y^2=79 x^6+34 x^5+48 x^4+84 x^3+37 x^2+107 x+44$
- $y^2=38 x^6+102 x^5+10 x^4+67 x^3+103 x^2+104 x+61$
- $y^2=37 x^6+35 x^5+59 x^4+67 x^3+110 x^2+16 x+79$
- $y^2=101 x^6+64 x^5+17 x^4+87 x^3+55 x^2+25 x+29$
- $y^2=x^6+45 x^5+74 x^4+75 x^3+33 x^2+2 x+99$
- $y^2=55 x^6+55 x^5+70 x^4+76 x^3+110 x^2+110 x+24$
- $y^2=22 x^6+76 x^5+6 x^4+96 x^3+99 x^2+28 x+19$
- $y^2=76 x^6+11 x^5+45 x^4+103 x^3+20 x^2+97 x+5$
- $y^2=84 x^6+91 x^5+55 x^4+83 x^3+82 x^2+29 x+78$
- $y^2=54 x^6+88 x^5+108 x^4+34 x^3+47 x^2+23 x+43$
- $y^2=47 x^6+4 x^5+8 x^4+24 x^3+109 x^2+47 x+96$
- $y^2=40 x^6+80 x^5+15 x^4+82 x^3+67 x^2+109 x+65$
- $y^2=110 x^6+109 x^5+37 x^4+13 x^3+98 x^2+33 x+105$
- $y^2=37 x^6+51 x^5+5 x^4+28 x^3+27 x^2+8 x+92$
- $y^2=27 x^6+86 x^5+104 x^4+94 x^3+69 x^2+92 x+46$
- $y^2=10 x^6+109 x^5+14 x^4+10 x^3+8 x^2+64 x+78$
- $y^2=94 x^6+29 x^5+87 x^4+109 x^3+86 x^2+66 x+34$
- $y^2=49 x^6+86 x^5+9 x^4+48 x^3+51 x^2+50 x+57$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bg_ru | $2$ | (not in LMFDB) |