Properties

Label 2.113.abg_rq
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 32 x + 458 x^{2} - 3616 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0587677112590$, $\pm0.325130826324$
Angle rank:  $2$ (numerical)
Number field:  4.0.180288.2
Galois group:  $D_{4}$
Jacobians:  $44$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9580$ $161672080$ $2082457644460$ $26583804783232000$ $339451797782414761900$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $12662$ $1443250$ $163043454$ $18424083602$ $2081947612214$ $235260519758066$ $26584442000308606$ $3004041941672289490$ $339456739028192932982$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.180288.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.bg_rq$2$(not in LMFDB)