Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 32 x + 458 x^{2} - 3616 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0587677112590$, $\pm0.325130826324$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.180288.2 |
Galois group: | $D_{4}$ |
Jacobians: | $44$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9580$ | $161672080$ | $2082457644460$ | $26583804783232000$ | $339451797782414761900$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $12662$ | $1443250$ | $163043454$ | $18424083602$ | $2081947612214$ | $235260519758066$ | $26584442000308606$ | $3004041941672289490$ | $339456739028192932982$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=59 x^6+58 x^5+38 x^4+110 x^3+71 x^2+55 x+12$
- $y^2=20 x^6+95 x^5+9 x^4+92 x^3+90 x^2+41 x+13$
- $y^2=54 x^6+29 x^5+41 x^4+40 x^3+10 x^2+58 x+92$
- $y^2=80 x^6+107 x^5+62 x^4+17 x^3+6 x^2+93 x+42$
- $y^2=75 x^6+83 x^5+94 x^4+33 x^3+103 x^2+50 x+95$
- $y^2=26 x^6+47 x^5+77 x^4+10 x^3+4 x^2+7 x+3$
- $y^2=94 x^6+34 x^5+68 x^4+72 x^3+26 x^2+34 x+16$
- $y^2=96 x^6+79 x^5+7 x^4+3 x^3+27 x^2+36 x+94$
- $y^2=58 x^6+13 x^5+67 x^4+25 x^3+60 x^2+35 x+108$
- $y^2=3 x^6+21 x^5+22 x^4+65 x^3+44 x^2+73 x+50$
- $y^2=24 x^6+104 x^5+75 x^4+26 x^3+92 x^2+101 x+34$
- $y^2=53 x^6+8 x^5+30 x^4+60 x^3+70 x^2+111 x+61$
- $y^2=80 x^6+32 x^5+42 x^4+51 x^3+47 x^2+64 x+58$
- $y^2=67 x^6+90 x^5+75 x^4+80 x^3+108 x^2+58 x+68$
- $y^2=40 x^6+9 x^5+109 x^4+12 x^3+13 x^2+28 x+34$
- $y^2=36 x^6+65 x^5+29 x^4+22 x^3+51 x^2+55 x+9$
- $y^2=95 x^6+9 x^5+37 x^4+75 x^3+108 x^2+89 x+112$
- $y^2=57 x^6+6 x^5+73 x^4+10 x^3+35 x^2+36 x+55$
- $y^2=56 x^6+30 x^5+31 x^4+66 x^3+80 x^2+87 x+105$
- $y^2=60 x^6+101 x^5+86 x^4+45 x^3+67 x^2+61 x+29$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.180288.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bg_rq | $2$ | (not in LMFDB) |