Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 32 x + 456 x^{2} - 3616 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0392315139262$, $\pm0.328630858736$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.24617216.1 |
Galois group: | $D_{4}$ |
Jacobians: | $16$ |
Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9578$ | $161619172$ | $2082180125834$ | $26583065167088144$ | $339450483029715439498$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $12658$ | $1443058$ | $163038918$ | $18424012242$ | $2081946746098$ | $235260510095602$ | $26584441877660286$ | $3004041939876373714$ | $339456739002913716018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=78 x^6+88 x^5+32 x^4+25 x^3+30 x^2+29 x+92$
- $y^2=86 x^6+45 x^5+16 x^4+16 x^3+100 x^2+74 x+91$
- $y^2=21 x^6+81 x^5+48 x^4+57 x^3+108 x^2+70 x+8$
- $y^2=21 x^6+48 x^5+53 x^4+x^3+66 x^2+106 x+11$
- $y^2=16 x^6+35 x^5+75 x^4+94 x^3+109 x^2+7 x+87$
- $y^2=88 x^6+107 x^4+46 x^3+98 x^2+69 x+1$
- $y^2=29 x^6+19 x^5+82 x^4+61 x^3+74 x^2+98 x+10$
- $y^2=69 x^6+64 x^5+87 x^4+32 x^3+21 x^2+60 x+73$
- $y^2=88 x^6+59 x^5+89 x^4+18 x^3+56 x^2+10 x+78$
- $y^2=7 x^6+12 x^5+102 x^4+99 x^3+2 x^2+62 x+9$
- $y^2=57 x^6+64 x^5+33 x^4+52 x^3+98 x^2+110 x+27$
- $y^2=39 x^6+69 x^5+59 x^4+72 x^3+38 x^2+109 x+20$
- $y^2=36 x^6+28 x^5+84 x^4+50 x^3+85 x^2+106 x+27$
- $y^2=49 x^6+10 x^5+30 x^4+47 x^3+32 x^2+28 x+110$
- $y^2=68 x^6+101 x^5+27 x^4+87 x^2+46 x+109$
- $y^2=39 x^6+106 x^5+86 x^4+21 x^3+68 x^2+56 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.24617216.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bg_ro | $2$ | (not in LMFDB) |